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ABSTRACT

Non-local games provide a useful framework for exhibiting the power of quantum entangle-

ment, and we will focus our study on the graph isomorphism game and the metric isometry game.

Work in quantum information theory has led to quantum versions of many concepts in classical

mathematics, including quantum graphs and quantum metric spaces. We generalize Banica’s con-

struction of the quantum isometry group of a metric space to the class of quantum metric spaces in

the sense of Kuperberg and Weaver.

We prove that the non-commutative algebraic notion of a quantum isomorphism between two

finite, classical objects (either graphs or metric spaces) is the same as the more physically motivated

one arising from the existence of a perfect quantum strategy for the corresponding game. This

is achieved by showing that every algebraic quantum isomorphism between a pair of (quantum)

objects X and Y arises from a certain measured bigalois extension for the quantum symmetry

groups GX and GY of X and Y . In particular, this implies that the quantum groups GX and GY

are monoidally equivalent.

For the case of the graph isomorphism game, we also establish a converse to this result, which

says that a compact quantum group G is monoidally equivalent to the quantum automorphism

group GX of a given quantum graph X if and only if G is the quantum automorphism group of a

quantum graph that is algebraically quantum isomorphic to X .
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Finite input-output games have received considerable attention in the quantum information

theory literature as tools for investigating the structure of quantum correlations. First proposed by

physicist John Stewart Bell in the 1960’s, a non-local game is played cooperatively by Alice and

Bob against a referee; Alice and Bob may communicate prior to gameplay but are no longer able to

communicate once a round begins. The two players may have access to a shared entangled quan-

tum state and measurements performed on the entangled physical system allow them to correlate

their answers to the referee in a way they would not be able to do classically ([13]). The quantum

correlations are defined as the collection of conditional probability densities (p(a, b|v, w)) of ob-

taining a pair of outputs a, b for a given pair of inputs v, w. Their behaviour may be modeled by

quantum mechanics and there are various different mathematical models (loc, q, qs, qc) describing

the outcome of a quantum experiment. The conditional probability densities that can arise from

quantum experiments in an entangled state is larger than the set of densities that can be obtained

from classical shared randomness. Chapter 2 recalls definitions and results regarding non-local

games and their classical and quantum strategies.

Work in quantum information theory has led to quantum versions of many concepts in classical

mathematics. First introduced in [2] by taking two finite graphs X and Y , the graph isomorphism

game Iso(X, Y ) has a winning classical strategy if and only if the two graphs are isomorphic. The

game is played using two finite graphs X and Y , where the inputs and outputs are the disjoint

union of the vertices from the two graphs.

A natural question to ask is whether such a game exists for other classical structures. We define

a metric isometry game, Isom(X, Y ), for two finite metric spaces (X, dX) and (Y, dY ). This game

has inputs and outputs that are the disjoint union of the set of points in X and Y and has a winning

classical strategy if and only if the two metric spaces are isometric. The metric isometry game also
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has a close connection to the weighted graph isomorphism game, explained in Section 2.5.

Synchronous games form a special class of games where Alice and Bob share a set of questions

and answers, and within a given round if both players receive the same question, they must produce

the same answer. A bi-synchronous game has the additional restriction that the only way both

players may win if they produce the same answer within a given round is if they were given the

same question by the referee. The graph isomorphism game is an example of a bi-synchronous

game that has been well-studied in the literature, and the metric isometry game is a new example

in the class of bi-synchronous games.

Each synchronous game G has a ∗-algebra, A(G), that is associated to it and defined by gen-

erators and relations (Section 2.2). The representation theory of the game ∗-algebra gives infor-

mation about the existence of perfect strategies for each of the mathematical models listed above

([24, 26]). For both the graph isomorphism game G = Iso(X, Y ) and the metric isometry game

G = Isom(X, Y ), A(G) is a non-commutative analogue of the function algebra of the space of

maps (either isomorphisms or isometries) X → Y .

We say that the two objects X and Y are algebraically quantum isometric if A(G) 6= 0. It was

shown in [24] that there exist games G for which the ∗-algebra A(G) may be non-zero even if this

algebra has no C∗-representations, and in particular, no perfect quantum strategies. We show that

both the graph isomorphism game and the metric isometry game have the property that if the game

∗-algebra is nontrivial, then it has a nontrivial C∗-representation.

We are then naturally prompted to consider quantum analogues of classical objects such as

quantum sets, quantum graphs, and quantum metric spaces.

We think of “quantum spaces” in the sense of non-commutative geometry: they are ∗-algebras

or C∗-algebras thought of as function algebras on the otherwise non-existent spaces. In the same

spirit, we will work with quantum graphs (finite-dimensional C∗-algebras equipped with some

additional structure mimicking an “adjacency matrix”) and quantum groups i.e. (objects dual to)

non-commutative ∗-algebras with enough structure to resemble algebras of representative functions

on compact groups, both are defined in Section 3.1.
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As is the case classically, every quantum graphX has a quantum automorphism groupGX . The

recent papers [30, 31, 32] uncover further remarkable connections between graph isomorphism

games and quantum automorphism groups. Moreover, while [30] focuses on classical graphs,

[31, 32] consider a more general categorical quantum mechanical framework which leads natu-

rally to the notion of a quantum graphs and the generalization of the graph isomorphism game

to that framework. In particular, [32] obtains a characterization of (finite-dimensional) quantum

isomorphic quantum graphs X , Y in terms of simple dagger Frobenius monoids in the category

of finite dimensional representations of the Hopf ∗-algebra O(GX) of the corresponding quan-

tum automorphism group GX . On the other hand, [30] uses ideas from quantum group theory to

establish the equivalence between the existence of C∗-quantum isomorphisms for graphs and the

existence of perfect strategies for the isomorphism game within the so-called quantum commuting

framework.

Here, we continue in the same vein investigating connections between quantum automorphism

groups of graphs and the graph isomorphism game, taking a somewhat dual approach to the one in

[31, 32].

In [27], Kuperberg and Weaver define a non-commutative analogue of a metric space, called a

W ∗-quantum metric space, which we introduce in Section 3.2. A W ∗-quantum metric space is a

one-parameter family of weak∗-closed operator systems V = {Vt}t≥0. The intuition is that the Vt

is a non-commutative analogue of pairs of points (x, y) whose distance is at most t.

Given a finite metric space with n points, we recall that the isometry group is a natural subgroup

of the permutation group Sn. Specifically, the isometry group is the subgroup of Sn satisfying the

relations σD = Dσ where D is the distance matrix for the metric space and σ is a permutation

in the symmetry group (viewed as a matrix group). In [5], Banica defined the quantum isometry

group of a finite metric space in a similar way: the quantum isometry group is a quantum subgroup

of the quantum permutation group, defined as the quotient of the function algebra of the quantum

permutation group by adding relations mimicking the classical case. In Section 3.3, we generalize

Bancia’s definition to (possibly infinite) W ∗-quantum metric spaces and show that the universal
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object defining the quantum isometry group exists in the finite dimensional case and agrees with

Banica’s definition.

One of our main results is proven in Chapter 4:

Theorem. Consider two quantum objects (quantum graphs or quantum metric spaces), and sup-

pose the quantum isomorphism / isometry space between the two quantum objects is non-zero.

Then the two quantum symmetry groups corresponding to the two quantum objects are monoidally

equivalent.

If we look at this restricted to the classical case, we have the following result:

Theorem. Two classical objects (graphs or metric spaces) are algebraically quantum isometric if

and only if the corresponding game has a perfect quantum-commuting (qc)-strategy.

This (non-commutative) bundle-theoretic perspective on A(G) has advantages: although the

construction ofA(G) is purely algebraic and does not assume the existence of any C∗-representations

of this object, we use the above result to show that this algebra always admits a faithful invariant

state whenever it is non-zero, leading to connections with the notion of monoidal equivalence be-

tween quantum symmetry groups. Loosely speaking, we say that two compact quantum groups are

monoidally equivalent if their categories of finite-dimensional unitary representations are equiva-

lent as rigid C∗-tensor categories.

One main result about the graph isomorphism game says:

Theorem. Let X be a quantum graph and GX its quantum automorphism group. Then for any

compact quantum group G monoidally equivalent to GX , one can construct from this monoidal

equivalence a quantum graph Y , an isomorphism of quantum groups G ∼= GY , and an algebraic

quantum isomorphism X ∼=A∗ Y .

Remark. The theorem above says that the collection of quantum groups {GX} where X is a

quantum graph is closed under monoidal equivalence.
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The rest of this chapter contains a brief overview of compact quantum groups, which we will

use to prove the results that follow. Chapter 2 recalls some preliminary material on non-local

games and introduces the two examples we will study: the graph isomorphism game and the metric

isometry game. In Chapter 3, we begin to look at quantum analogues of classical objects, namely

quantum graphs and quantum metric spaces. We study the quantum symmetry groups of these

quantum objects. We look at Galois extensions in the context of both these games in Chapter 4,

and prove our main results in this chapter. Finally, Chapter 5 contains a summary of our results.

1.2 Notation

If n is a natural number, we sometimes write [n] for the ordered set {1, 2, . . . , n}. All vector

spaces considered here are over the complex field. We use the standard leg numbering notation for

linear operators on tensor products of vector spaces. For example, if X, Y, Z are vector spaces and

T : X⊗Y → X⊗Y is a linear map, then T13 : X⊗Z⊗Y → X⊗Z⊗Y is the linear map which

acts as T on the first and third leg of the triple tensor product, and as the identity on the second leg.

When referring to tensor products, we use the symbol⊗ to denote the tensor product of Hilbert

spaces or the minimal tensor product of C∗-algebras. We use the symbol ⊗ to either denote the

normal spatial tensor product of von Neumann algebras or the weak∗ closure of the algebraic tensor

productM⊗N .

1.3 Compact Quantum Groups

We will now review the basics of compact quantum groups, their actions and representations.

The reader may be referred to references [46, 33, 45, 15] for details.

Definition 1.3.1. A compact quantum group is a unital C∗-algebra A equipped with a unital ∗-

homomorphism called comultiplication ∆ : A → A⊗A such that

• (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ as homomorphisms (co-associativity)

• the spaces span{(a ⊗ 1)∆(b) | a, b ∈ A} and span{(1 ⊗ a)∆(b) | a, b ∈ A} are dense in

A⊗A (the cancellation property)
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Motivation for this definition comes from the example given by A = C(G), the space of all

continuous complex functions on a fixed compact group G. Here, comultiplication ∆ : C(G) →

C(G×G) ∼= C(G)⊗C(G) is given by (∆(f))(g, h) = f(g ·h) so ∆ captures the group operation

at the level of C(G).

Conversely, every compact quantum group (A,∆) whose underlying C∗-algebra A is commu-

tative is of the form A = C(G) for some compact group G [46].

Remark 1.3.2. Based on this commutative example, we use the notation A = C(G) for general

compact quantum groups.

We look at a few examples of compact quantum groups which will be used later. First, we

define a magic unitary over a unital ∗-algebra A to be an n × n matrix U = [uij]i,j with entries

uij ∈ A which satisfies

• uij = u∗ij = u2ij

• uijui` = δj`uij

• uiju`j = δi`uij

•
∑n

i=1 uij = 1 =
∑n

j=1 uij

In the case where A is the complex numbers, a magic unitary matrix is simply a permutation

matrix.

Example 1.3.3. The quantum permutation group S+
n [42] is the compact quantum group (A,∆)

where A = C(S+
n ) is the universal C∗-algebra generated by the entires of an n× n magic unitary

matrix u = [uij]. Comultiplication is given by the formula ∆(uij) =
∑

k uik ⊗ ukj .

If we were to instead consider the universal C∗-algebra generated by commuting entries of an

n × n magic unitary matrix, we would get the function algebra C(Sn) of the symmetry group Sn.

Thus, we should view C(S+
n ) as a non-commutative symmetry group of a finite set of n points with
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no extra structure. There always exists a quotient map π from C(S+
n ) into C(Sn) which intertwines

the coproducts on C(S+
n ) and C(Sn); that is, we can realize Sn as a subgroup of S+

n .

It was shown that for n ≥ 4, Wang showed in [42] that C(S+
n ) is non-commutative, that is,

that even classical objects such as four points with no additional structure can have quantum

symmetries unseen when restricting to classical groups.

Example 1.3.4. The universal unitary quantum group U+
F associated to a matrix F ∈ GLn(C)

[42] is the universal ∗-algebra generated by the entries of a n × n matrix u = [uij] for which

(1 ⊗ F )[u∗ij](1 ⊗ F−1) is a unitary in Mn(C(U+
F )). The comultiplication map ∆ is defined the

same as for S+
n .

Let G = (C(G),∆) be a compact quantum group and H a finite dimensional Hilbert space

of dimension n. In general, a representation of G is an invertible element v ∈ B(H) ⊗ C(G)

such that (id⊗∆)(v) = v12v13. If we fix an orthonormal basis (ej) for H, then a representation

v corresponds to an invertible matrix v = [vij] ∈ Mn(C(G)) such that ∆(v) =
∑n

k=1 vik ⊗ vkj .

We call v a unitary representation if it is unitary. Given an infinite dimensional Hilbert space H,

one can similarly define an infinite dimensional unitary representation to be some u ∈M(K(H)⊗

C(G)) such that (id⊗∆)(u) = u12u13. We refer the reader to [33] for details.

Fix two representations v ∈ B(Hv) ⊗ C(G) and u ∈ B(Hu) ⊗ C(G). A morphism be-

tween u and v is a linear map T : Hu → Hv that satisfies (T ⊗ 1)u = v(T ⊗ 1), and we let

Mor(u, v) be the Banach space of all morphisms between u and v. We call representations u

and v equivalent if Mor(u, v) contains an invertible element. Two representations are said to be

irreducible if Mor(u, u) = C. The set of equivalence classes of irreducible representations is

denoted Irr(G). It’s easy to show that if u is a unitary representation, then Mor(u, u) is a C∗-

algebra. We may consider the direct sum u ⊕ v ∈ B(Hu ⊕ Hv) ⊗ C(G), the tensor product

u⊗v := u13v23 ∈ B(Hu⊗Hv)⊗C(G) and conjugate representation u := [u∗ij] ∈ B(H)⊗C(G).

We may view a compact quantum group as a Hopf ∗-algebra, with the the structure maps of

the underlying compact group giving rise to a number of unital homomorphisms with ∆ as above.

More details may be found in [19].
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Definition 1.3.5. A Hopf ∗-algebra is a pair (A,∆) where A is a unital ∗-algebra and ∆ : A →

A ⊗ A is a unital ∗-homomorphism that satisfies (∆ ⊗ id) ◦ ∆ = (id⊗∆) ◦ ∆ and for some

∗-homomorphism ε : A → C satisfying (ε ⊗ id)∆(a) = a = (id⊗ε)∆(a) and for some anti-

homomorphism S : A → A such that m(S ⊗ id)∆(a) = ε(a)1 = m(id⊗S)∆(a) where m :

A⊗A → A is the multiplication map.

A special class of compact quantum groups are the compact matrix quantum groups. A compact

matrix quantum group is a compact quantum group G with a finite dimensional representation

u = [uij] such that C(G) = C∗(uij, u
∗
ij). We call u a fundamental representation of G.

Most compact quantum groups are presented as compact matrix quantum groups: both exam-

ples above are examples of compact matrix quantum groups.

Definition 1.3.6. Given a compact matrix quantum group G, we define the Hopf ∗-algebra O(G)

to be the ∗-algebra generated by the coefficients uij of the fundamental representation U = [uij].

It is possible to define compact quantum groups by either Hopf ∗-algebras or defined as a

C∗-algebraic object, and we will do this interchangeably throughout this dissertation.

Theorem 1.3.7. For any compact quantum group G, the pair (O(G),∆) is a Hopf ∗-algebra with

S(uij) = u∗ji and ε(uij) = δij .

The representation category of a compact quantum group G, denoted Rep(G), is defined to be

the category whose objects are equivalence classes of finite dimensional representations of G and

morphisms are intertwiners. An interested reader can refer to [33] for more details.

The fundamental theorem on finite dimensional representations of compact quantum groups is

analogous to the classical case. It is stated as follows:

Theorem 1.3.8. ([46]) Let G be a compact quantum group. Every finite dimensional representa-

tion of G is equivalent to a unitary representation, and every finite dimensional unitary represen-

tation of G is equivalent to a direct sum of irreducible representations.

C(G) is densely linearly spanned by the matrix elements of irreducible unitary representations

of G.
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2. NON-LOCAL GAMES

2.1 Games and Correlations

A two-player non-local game is a tuple G = (IA, IB, OA, OB, λ) where IA, IB, OA, OB are

finite sets representing the inputs and outputs for Alice and Bob and

λ : IA × IB ×OA ×OB → {0, 1}

is a rule function. The game is played cooperatively by two players, Alice and Bob, against a

referee. The game rules are known by all before the game begins, and Alice and Bob may agree

on a strategy before beginning to play the game. While the game is being played however, Alice

and Bob may no longer communicate and can only rely on the strategy they agreed upon.

A single round of the game consists of the referee giving Alice an input (question) v from her

set of possible inputs IA, and giving Bob an input w from his set of possible inputs IB. Without

communicating, Alice and Bob reply with outputs (answers) a ∈ OA and b ∈ OB, respectively.

They win the round if λ(v, w, a, b) = 1 and lose the round otherwise. Alice, Bob, and the referee

play repeated rounds, and their goal is to win each round.

A game is called synchronous provided that the two players input sets are the same (I = IA =

IB), as are their output sets (O = OA = OB), and the rule function satisfies λ(v, v, a, b) = 0 if

a 6= b for all v ∈ I .

Another way to say this is that when Alice and Bob receive the same input, in order to win they

must produce the same output. We call a game bi-synchronous as in [34] provided that the game is

both synchronous and λ(v, w, a, a) = 0 if v 6= w for all a ∈ O.

The strategies that Alice and Bob may utilize break into two categories: either a deterministic

strategy or a random strategy. A deterministic strategy is a pair of functions h : IA → OA and

k : IB → OB which determine the answers Alice and Bob give to the referee. If they receive

(v, w) ∈ IA × IB then they respond with (h(v), k(w)) ∈ OA × OB. A deterministic strategy wins

9



every round if and only if λ(v, w, h(v), k(w)) = 1 for all (v, w) ∈ IA× IB. We call such a strategy

a perfect deterministic strategy. Given a synchronous game, a perfect deterministic strategy must

satisfy h = k.

A random strategy or probabilistic strategy is characterized by the fact that on different rounds

of the game, Alice and Bob may produce different outputs given the same input pair (v, w). The

idea is that even though there might not exist a perfect deterministic strategy to win the game,

the players may improve their chance of winning the game by sampling their outputs according

to some joint probability distribution. As an outsider to the game, one may observe multiple

rounds of the game to obtain the conditional probability density p(a, b|v, w) which describes their

behaviours and represents the probability that given inputs (v, w) ∈ IA × IB that Alice and Bob

produce outputs (a, b) ∈ OA × OB. It’s clear that 0 ≤ p(a, b|v, w) ≤ 1 and that given a fixed

(v, w) ∈ IA × IB,
∑

a∈OA,b∈OB
p(a, b|v, w) = 1.

We call a random strategy perfect if Alice and Bob win each round with probability 1. That

is, the strategy is perfect if λ(v, w, a, b) = 0 implies that p(a, b|v, w) = 0 for any (v, w, a, b) ∈

IA × IB ×OA ×OB.

Assuming different mathematical models, we may get different sets of conditional probabilities

p(a, b|v, w). Given n inputs and k outputs, we denote the set of conditional probability densities

that belong to each of these sets by Ct(n, k) satisfying

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) ⊆ Cns(n, k)

where t is one of local (loc), quantum (q), quantum spatial (qs), quantum approximate (qa),

quantum commuting (qc), and non-signalling (ns) correspond to the different models. Here, local

(or classical) correlations arise when Alice and Bob utilize only a shared probability space while

quantum strategies arise from the random outcomes of entangled quantum experiments.

Definition 2.1.1. The setCloc(n, k) is the set of classical conditional probabilities which arise from

Alice and Bob sharing a probability space (Ω, µ) where each has a collection of random variables

10



fω,A : IA → OA and gω,B : IB → OB with

p(a, b|v, w) = µ({ω ∈ Ω | fω,A(v) = a, gω,B(w) = b}).

It’s known that the set Cloc(n, k) is a closed, convex set for all n, k. Moreover, it is a polytope.

We also have a number of different mathematical models to describe the quantum strategies that

may arise, which we review below.

Definition 2.1.2. A correlation p(a, b|v, w) is called a quantum (q) correlation if Alice and Bob’s

state spaces are given by finite dimensional Hilbert spaces HA,HB on which they’re allowed

to make measurements, and a shared state ψ ∈ HA ⊗ HB. Alice has orthogonal projections

ev,a ∈ B(HA) such that
∑

a ev,a = idHA
(and Bob has orthogonal projections fw,b ∈ B(HB) such

that
∑

b fw,b = idHB
) such that

p(a, b|v, w) = 〈ev,a ⊗ fw,bψ, ψ〉.

Definition 2.1.3. A correlation is called quantum spacial (qs) correlation if we relax the definition

of quantum correlations to allow the Hilbert spaces to be infinite dimensional.

Definition 2.1.4. We let Cqa(n, k) be the set of all quantum approximate (qa) correlations and

define this to be the closure of Cq(n, k).

It’s known in [39] that Cqa(n, k) = Cqs(n, k).

Definition 2.1.5. A correlation p(a, b|v, w) is called a quantum commuting (qc) correlation if Alice

and Bob now share a single Hilbert spaceH on which their shared state ψ lives. It is now required

that all of Alice’s measurement operators ev,a ∈ B(H) commute with all of Bob’s measurement

operators fw,b ∈ B(H) and p(a, b|v, w) = 〈ev,afw,bψ, ψ〉.

Definition 2.1.6. We call a correlation (p(a, b|v, w) non-signalling (ns) if the following definitions

are well-defined for all v ∈ IA and w ∈ IB:
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pA(a|v) =
∑
w∈OB

p(a, b|v, w) =
∑
w∈OB

p(a, b|v, w′) w,w′ ∈ IB

pB(b|w) =
∑
v∈OA

p(a, b|v, w) =
∑
v∈OA

p(a, b|v′, w) v, v′ ∈ IB

This implies that the two players do not communicate: so the conditional probability that Alice

produces output a ∈ OA when she is given input v ∈ IA (or Bob produces output b ∈ OB when he

is given input w ∈ IB) is independent of the behaviour of the other player.

It’s known that for n, k ≥ 2 Cloc(n, k) 6= Cq(n, k). It was shown in [20] that for n ≥ 5, k ≥ 2

we have Cqs(n, k) 6= Cqa(n, k), and [16] showed for n ≥ 5, k ≥ 3 then Cq(n, k) 6= Cqs(n, k). In

[25] it was shown there exists n, k such that Cqa(n, k) 6= Cqc(n, k) which also disproves Connes’

embedding conjecture posed in [17]. We refer the reader to [26, 30] for a more thorough investi-

gation of the models.

We say that a game has a perfect t-strategy if it has a perfect random strategy that belongs to

one of these models, where t is one of loc, q, qs, qa, or qc.

2.2 The ∗-algebra of a synchronous game

In this subsection, we recall the definition of the ∗-algebra of a synchronous game and summa-

rize the results found in [26, 30, 40].

Definition 2.2.1. The ∗-algebra of a synchronous game G, A(G), is defined as the quotient of the

free ∗-algebra generated by {ev,a | v ∈ I, a ∈ O} subject to the relations

• ev,a = e∗v,a

• ev,a = e2v,a

• 1 =
∑

a ev,a
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• ev,aew,b = 0 for all v, w, a, b such that λ(v, w, a, b) = 0

The generators ev,a represent the measurement operators for Alice while the algebraic relations

above are forced upon us by the restrictions of a winning strategy – from both the mathematical

formalism of quantum mechanics together with the structure of the rule function. In particular,

since our game is synchronous and moreover λ(v, w, a, b) = δa,b then if a 6= bwe have ev,aev,b = 0.

Note that this algebra may be zero, and in fact, we are specifically interested in the cases where

this algebra is non-zero.

The following theorem proved in [26] shows that the representation theory of the game ∗-

algebra is crucial to understanding the existence of a winning t-strategy of the game.

Theorem 2.2.2. Let G = (I, O, λ) be a synchronous game. Then

• G has a perfect deterministic strategy if and only if G has a perfect loc-strategy if and only if

there exists a unital ∗-homorphism from A(G) to C.

• G has a perfect q-strategy if and only if G has a perfect qs-strategy if and only if there exists

a unital ∗-homomorphism from A(G) to B(H) for some non-zero finite dimensional Hilbert

spaceH.

• G has a perfect qa-strategy if and only if there exists a unital ∗-homomorphism of A(G) into

the ultrapower of the hyperfinite II1-factor.

• G has a perfect qc-strategy if and only if there exists a unital C∗-algebra C with a faithful

trace and a unital ∗-homomorphism π : A(G)→ C.

Definition 2.2.3. We say a synchronous game G has a perfect A∗-strategy if A(G) is non-zero. We

say G has a perfect C∗-strategy if there exists a unital ∗-homomorphism form A(G) into B(H) for

some non-zero Hilbert spaceH.

In general, these strategies are not physical and there is no guarantee of a corresponding

physical correlation.
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2.3 The Graph Isomorphism Game

A graphX is specified by a vertex set V (G) and an edge setE(X) ⊆ V (X)×V (X), satisfying

(v, v) /∈ E(X) and (v, w) ∈ E(X) =⇒ (w, v) ∈ E(X). Given two graphs X and Y , a graph

homomorphism from X to Y is a function f : V (X) → V (Y ) with the property that (v, w) ∈

E(X) =⇒ (f(v), f(w)) ∈ E(Y ). We write X → Y to indicate that there exists a graph

homomorphisms from X to Y . Graph homomorphisms encapsulate many familiar graph theoretic

parameters. If we let Kc denote the complete graph on c vertices, i.e., the graph where every pair

of vertices is connected by an edge, then

• the chromatic number of X is χ(X) = min{c : ∃X → Kc},

• the clique number of X is ω(X) = max{c : ∃Kc → X},

• the independence number of X is, α(X) = max{c : ∃Kc → X},

where X denotes the graph complement of X , i.e., the graph whose edge set is the complement of

X’s.

The graph homomorphism game from X to Y , which we shall denote by Hom(X, Y ), is a

synchronous game with inputs IA = IB = V (X) and outputs OA = OB = V (Y ). Alice and Bob

win a round provided that whenever they receive inputs that are an edge in X , then their outputs

are an edge in Y and that whenever Alice and Bob receive the same vertex in X they produce the

same vertex in Y . This is also a synchronous game.

Note that a perfect deterministic strategy for the graph homomorphism game from X to Y is a

function h : V (X) → V (Y ) that is a graph homomorphism. In particular, a perfect deterministic

strategy exists if and only if ∃X → Y . Similarly, we say that there is a t-homomorphism from X

to Y and write X t→ Y if and only if there exists a perfect t-strategy for the graph homomorphism

game from X to Y for t = q, qs, etc.

Two graphs X and Y are isomorphic if and only if there exists a one-to-one onto function

f : V (X) → V (Y ) such that (v, w) is an edge in X if and only if (f(v), f(w)) is an edge in Y .
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We write X ' Y to indicate that X and Y are isomorphic. If we let AX denote the adjacency

matrix of X and analogously for AY , then it is well-known and easy to check that X ' Y if and

only if there is a permutation matrix P such that AXP = PAY .

The graph isomorphism game, Iso(X,Y) between X and Y is a game with the property that two

graphs are isomorphic if and only if there exists a perfect deterministic strategy for Iso(X, Y ). It

was introduced by Atserias et al. [2].

The easiest way to describe the rules for this game is in terms of the relation between a pair of

vertices. Formally, the relation on a graph is a function rel : V (X)× V (X)→ {0, 1,−1} with

• rel(v, w) = 0 ⇐⇒ v = w,

• rel(v, w) = −1 ⇐⇒ (v, w) ∈ E(X),

• rel(v, w) = +1 ⇐⇒ v 6= w and (v, w) /∈ E(X).

We remark that the matrix SX := (rel(v, w))v,w∈V (X) is known as the Seidel adjacency matrix

of the graph.

The rules for this game can be stated loosely as requiring that to win, outputs must come from

different graphs than inputs, outputs must have the same relations as inputs, and whenever one

player’s output is the same as the other player’s input, then the same must hold for the other player.

This final rule says that the deterministic strategy consists of a function and its inverse, instead of

just a pair of functions. The input set and output set for this game is the disjoint union of V (X)

with V (Y ) and

λ : (V (X) ∪ V (Y ))× (V (X) ∪ V (Y ))→ {0, 1},

satisfies λ(v, w, x, y) = 1 if and only if the following conditions are met:

• x belongs to a different graph than v and y belongs to a different graph than w,

• if v and w are both vertices of the same graph, then rel(v, w) = rel(x, y).

• if v and w are from different graphs and x = w, then y = v,
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• if v and w are from different graphs and y = v, then x = w.

Now it is not hard to see that this game is synchronous and it has a perfect deterministic strategy

if and only if X ' Y . Indeed, if it has a perfect deterministic strategy, then there must be a

function f : V (X) ∪ V (Y ) → V (X) ∪ V (Y ) and the rules force v ∈ V (X) =⇒ f(v) ∈ V (Y )

and x ∈ V (Y ) =⇒ f(x) ∈ V (X). Denoting the restrictions of f to V (X) and V (Y ) by

f1 : V (X) → V (Y ) and f2 : V (Y ) → V (X). The fact that rel(v, w) = rel(f1(v), f1(w))

tells us that f1 is one-to-one and preserves the edge relationships, since f2 is also one-to-one,

card(V (X)) = card(V (Y )) and so both f1 and f2 define graph isomorphisms.

We will write X 't Y if and only if this game has a perfect t-strategy for t ∈

{loc, q, qa, qc, C∗, A∗}.

The following result characterizes A(Iso(X, Y )).

Proposition 2.3.1. Let X = (V (X), E(X)) and Y = (V (Y ), E(Y )) be graphs on n vertices.

Then A(Iso(X, Y )) is generated by 4n2 self-adjoint idempotents {ev,w : v, w ∈ V (X) ∪ V (Y )}

satisfying:

1. eg,g′ = 0, ∀g, g′ ∈ V (X) and eh,h′ = 0, ∀h, h′ ∈ V (Y ),

2. e2g,h = e∗g,h = eg,h, ∀g ∈ V (X), h ∈ V (Y ),

3. for g ∈ V (X) and h ∈ V (Y ), eg,h = eh,g,

4.
∑

h∈V (Y ) eg,h = 1, ∀g ∈ V (X),

5.
∑

g∈V (X) eg,h = 1, ∀h ∈ V (Y ),

6. eg,heg,h′ = 0,∀h 6= h′,

7. eg,heg′,h = 0, ∀g 6= g′,

8.
∑

g′:(g,g′)∈E(X) eg′,h =
∑

h′:(h,h′)∈E(Y ) eg,h′ , ∀g, h.
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Proof. The definition of the *-algebra gives us property (2). Similarly, it’s quickly clear that (6)

and (7) follow from the winning criteria of the game.

To see criteria (1), consider g, g′ ∈ X . Then for all x, y ∈ X ∪ Y , we have λ(g, x, g′, y) = 0.

Therefore, for a fixed x, we have

eg,g′ = eg,g′

( ∑
x∈X∪Y

ey,x

)

=
∑

x∈X∪Y

eg,g′ey,x

=
∑

z∈X∪Y

λ(g, x, g′, y)eg,g′ey,x

= 0.

So eg,g′ = 0. Similarly, for h, h′ ∈ Y , eh,h′ = 0.

Criteria (4) and (5) follow easily: for any g ∈ X , then

1 =
∑

x∈X∪Y

eg,x =
∑
x∈Y

eg,x.

To prove criteria (3), take some g ∈ X and h ∈ Y then

eh,g = eh,g

(∑
x∈Y

eg,x

)
=
∑
x∈Y

eh,geg,x =
∑
x∈Y

λ(h, g, g, x)exgegx = ehgegh.

Similarly, egh = eghehg. So then

egh = e∗gh = (eghehg)
∗ = e∗hge

∗
gh = ehgegh = ehg.
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Finally to see (8), we have that

∑
g′:(g,g′)∈E(X)

eg′,h =
( ∑
g′:(g,g′)∈E(X)

eg′,h
)( ∑

h′∈V (Y )

eg,h′
)

=

∑
g′,h′:(g,g′)∈E(X),h′∈V (Y )

eg′,heg,h′ =
∑

g′,h′:(g,g′)∈E(X),(h,h′)∈E(Y )

eg′,heg,h′ ,

since λ(g′, g, h, h′) = 0 unless (h, h′) ∈ E(Y ). Similarly, one shows that
∑

h′:(h,h′)∈E(Y ) eg,h′ is

equal to this latter sum and (8) follows.

Remark 2.3.2. A nice compact way to represent the above relations is to consider the n×n matrix

U = (eg,h)g∈V (X),h∈V (Y ). Then by (2) every entry is a self-adjoint idempotent, while (4) and (5)

imply that U∗U = UU∗ is the identity matrix, i.e., that U is a unitary. We also, by (6) and (7),

have that entries in each row and column are pairwise “orthogonal", i.e., have pairwise 0 product.

Such a matrix U will be referred to as a quantum permutation over the ∗-algebra A(Iso(X, Y )).

Equation (8) implies that (1 ⊗ AX)U = U(1 ⊗ AY ) where AX and AY denote the adjacency

matrices of the graphs, and 1 is the unit of the algebra. Thus, Proposition 2.3.1 can be summarized

as saying that A(Iso(X, Y )) is the ∗-algebra generated by {eg,h : g ∈ V (X), h ∈ V (Y )} subject

to the relations that U = (eg,h) is a quantum permutation with (1⊗AX)U = U(1⊗AY ). We have

that X 'A∗ Y if and only if a non-trivial ∗-algebra exists satisfying these relations.

Remark 2.3.3. Combining Proposition 2.3.1 with Theorem 2.2.2, we see that given two graphs X

and Y on n vertices:

• X 'q Y if and only if there exist a d and projections Eg,h ∈ Md such that U = (Eg,h) is a

unitary in Mn(Md) and (1⊗ AX)U = U(1⊗ AY ),

• X 'qa Y if and only if there exist projections Eg,h ∈ Rω such that U = (Eg,h) ∈ Mn(Rω)

is a unitary and (1⊗ AX)U = U(1⊗ AY ),

• X ∼qc Y if and only if there exists projections Eg,h in some C∗-algebra A with a trace such

that U = (Eg,h) ∈Mn(A) is a unitary and (1⊗ AX)U = U(1⊗ AY ),
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• X 'C∗ Y if and only if there exists projections Eg,h on a Hilbert space H such that U =

(Eg,h) ∈Mn(B(H)) is a unitary and (1⊗ AX)U = U(1⊗ AY ).

Also, if there exists a unital ∗-homomorphism from π : A(Iso(X, Y )) → C, then (π(eg,h)) ∈ Mn

will be a permutation matrix, satisfying AX(π(eg,h)) = (π(eg,h))AY , which is the classical notion

of isomorphism for graphs.

Note that we have the following obvious implications.

X ∼= Y =⇒ X ∼=q Y =⇒ X ∼=qa Y =⇒ X ∼=qc Y =⇒ X ∼=C∗ Y =⇒ X ∼=A∗ Y.

Moreover, it is known that the first two implications are not reversible [2, 26]. The question

of whether the third implication holds is still open. The question whether the implications X ∼=A∗

Y =⇒ X ∼=C∗ Y =⇒ X ∼=qc Y hold for generic X and Y had remained open for quite

some time. Only very recently the implication C∗ =⇒ qc was obtained in [30]. One of our main

results is that the implication A∗ =⇒ qc holds. In other words, A(Iso(X, Y )) 6= 0 if and only

if A(Iso(X, Y )) admits a tracial state. This is somehow surprising, because the same conclusion

cannot be made for the algebras A(Hom(X, Y )) [24].

2.4 The Linear Binary Constraint System Game

The Linear Binary Constraint Synchronous Game (LBCS) game was first introduced in [26]

and is a synchronous version of what is classically known as the Linear Binary Constraints System

(LBC) game. Given an m × n matrix A = (ai,j) over the field of two elements, Z2 and a vector

b, we introduce a game denoted syncBCS(A, b), that is intended to convince a referee that Alice

and Bob have a solution x to the equation Ax = b.

For i = 1, . . . ,m, let Vi = {j : ai,j 6= 0}. Note that to solve the i-th equation in Ax = b, we

only need ∑
j∈Vi

ai,jxj = bi,
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since the remaining terms are irrelevant. Set

Sbi = {x ∈ Zn2 :
∑
j∈Vi

ai,jxj = bi and xj = 0 for j /∈ Vi}.

We associate a synchronous game to Ax = b as follows:

Definition 2.4.1. SupposeAx = b is anm×n linear system over Z2 and b ∈ Zn2 . The synchronous

BCS game associated to Ax = b, denoted synBCS(A, b), is given as follows:

1. the input set is I = {1, . . . ,m};

2. the output set is O = Zn2 ;

3. given input (i, j), Alice and Bob win on output (x, y) if and only if x ∈ Sbi , y ∈ Sbj , and for

all k ∈ Vi ∩ Vj , xk = yk.

The connections between the graph isomorphism game and the synchronous binary constraint

system game are further explored in Section 4.2.3.

2.5 The Metric Isometry Game

A finite metric space is a finite set X equipped with a finite metric d : X × X → [0,∞).

Throughout this paper, we assume all metric spaces are finite, unless stated otherwise. Given two

finite metric spaces (X, dX) and (Y, dY ), we say the two metric spaces are isometric if there is a

bijection f between X and Y that preserves distances, that is, dX(x, x′) = dY (f(x), f(x′)) for all

x, x′ ∈ X . If they are isometric, we write X ' Y .

The metric isometry game, Isom(X, Y ) is a modification of the graph isomorphism game. To

define Isom(X, Y ), we set the inputs/outputs to be I = O = X t Y . Suppose the inputs for Alice

and Bob are v and w while the outputs are a and b, respectively. The players win the round if all

of the following are satisfied:

1. v and a are from different spaces

2. w and b are from different spaces
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3. If v and w are from the same metric space, then d•(v, w) = d•(a, b)

4. If v and w are from different spaces, then v = b if and only if w = a.

Note that condition 3 along with the fact that d(v, w) = 0 iff v = w forces the game

Isom(X, Y ) to be bi-synchronous. We may recast Isom(X, Y ) in terms of graphs, via a mod-

ification of the graph isomorphism game for weighted graphs.

From a metric space (X, d), one can derive a weighted graph GX = (V (G), E(G), w) arising

from the metric space. We let V (G) = X and let E(G) = X ×X so that G is the complete graph

on |X| vertices. We set the weight of the edge between x and y to be d(x, y) = d(y, x).

We note immediately that d(x, x) = 0 implies that the graph has no loops, d(x, y) = d(y, x) for

all x, y ∈ X implies that the graph is undirected, and the triangle inequality d(x, z) ≤ d(x, y) +

d(y, z) for all x, y, z ∈ X implies that the “cheapest” way to get from x to z (or vice versa) is

directly.

The distance matrix for this graph, AX = [aXij ]i,j∈X , is given by aij = d(i, j). It is a symmetric

matrix with zeros along the diagonal.

We will now define the weighted graph isomorphism game, an expansion of the well-studied

graph isomorphism game and show it is analogous to the Metric Isometry Game described earlier.

We start the game with two simple, weighted graphs, G and H .

Definition 2.5.1. From a simple weighted graph G, we define the minimum complete graph G′ to

be the complete graph on the same vertices with weight between vertices in G′ to be the cheapest

path weight between the two vertices in G.

Remark 2.5.2. For any simple weighted graph G, the minimum complete graph G′ gives rise to

a metric space in a manner analogous to the process earlier. It is possible that two distict simple

weighted graphs produce the same minimum complete graph.

From graphs G and H , we obtain the minimum complete graphs G′ and H ′. We set the inputs

and outputs for the weighted graph isomorphism game to be I = O = V (G) t V (H) = V (G′) t

V (H ′).
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The referee will give two inputs, v and w to the two players, respectively Alice and Bob. They

will reply with the outputs a and b. We say that the players win that round if the following criteria

are satisfied:

1. v and a are from different graphs

2. w and b are from different graphs

3. If v and w are from the same graph, then d·(v, w) = d·(a, b) where the distance is the

minimum path length of the minimum complete graphs

4. If v and w are from different graphs, then v = b if and only if w = a.

The directed graph isomorphism game is a reformulation of the metric isometry game.

Theorem 2.5.3. Take two metric spaces (X, dX) and (Y, dY ) and let G′ and H ′ be the correspond-

ing minimum complete graphs.

1. (X, dX) and (Y, dY ) are isometric

2. The Metric Isometry Game played on (X, dX) and (Y, dY ) has a winning classical strategy

3. The minimum complete graphs G′ and H ′ are isomorphic

4. The Weighted Graph Isomorphism game for G′ and H ′ has a winning classical strategy

Proof. (1)⇔ (3) is straightforward to check.

(1)⇒ (2): Suppose (X, dX) and (Y, dY ) are isometric, and ϕ : X → Y is an isomorphism. If

the player receives point x ∈ X , then they should respond with ϕ(x) and similarly, if the player

receives vertex y ∈ Y , then they should respond with ϕ−1(y). This will win the (X, dX)− (Y, dY )

metric isometry game and it is indeed a classical strategy.

(2)⇒ (1): Since the metric isometry game is a synchronous game, there must exist a winning

deterministic strategy. Indeed, let Alice’s answers be given by the function fA : X t Y → X t Y ,

22



and let Bob’s answers be given by the function fB : X t Y → X t Y . Since the game is

synchronous, the two functions must be equal and so call this function f := fA = fB.

Note that the restriction f |X : X → Y is an isomorphism from X to a subset of Y . Similarly,

the restriction f |Y : Y → X is an isomorphism from Y to a subset of X . This tells us that X and

Y are isometric and that f |X and f |Y are isomorphisms.

We are left to show that f |X = f |−1Y . That is, we want to show that for all x ∈ X ,

x = f |Y f |X(x). Consider the case where Alice receives x ∈ X and Bob receives f(x). The

deterministic strategy dictates that Alice will respond with f(x), and so because yA = xB then the

winning strategy criteria implies that xA = yB and so Bob is forced to respond with x. This is true

for all x ∈ X , and so f |X = f |−1Y .

The proof of (3)⇔ (4) is the same as the proof above.

We next want to know what the ∗-algebra of the metric isometry game is. This theorem mimics

Proposition 2.3.1.

Theorem 2.5.4. Let (X, dX) and (Y, dY ) be metric spaces, each with size n. ThenA(Isom(X, Y ))

is generated by 4n2 self-adjoint idempotents {ez,w | z, w ∈ X t Y } satisfying

1. ex,x′ = 0 for all x, x′ ∈ X and ey,y′ = 0 for all y, y′ ∈ Y

2. e2x,y = e∗x,y = ex,y for all x ∈ X, y ∈ Y

3. for x ∈ X and y ∈ Y , ex,y = ey,x

4.
∑

y∈Y ex,y = 1 for all x ∈ X

5.
∑

x∈X ex,y = 1 for all y ∈ Y

6. ex,yex,y′ = 0 for all y 6= y′

7. ex,yex′,y = 0 for all x 6= x′
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8. for any x ∈ X and y ∈ Y , then

∑
x′∈X

dX(x, x′)ex′,y =
∑
y′∈Y

dY (y′, y)ex,y′

Proof. The proof from Proposition 2.3.1 proves (1) through (7). To see (8), for all x ∈ X and

y ∈ Y , and recalling that λ(x′, x, y, y′) = 1 if and only if dX(x, x′) = dY (y, y′), we see that

∑
x′∈X

dX(x, x′)ex′,y =
∑
x′∈X

dX(x, x′)ex′,y

(∑
y′∈Y

ex,y′

)

=
∑

x′∈X,y′∈Y

dX(x, x′)ex′,yex,y′

=
∑

x′∈X,y′∈Y

dX(x, x′)λ(x′, x, y, y′)ex′,yex,y′

=
∑

x′∈X,y′∈Y

dY (y′, y)ex′,yex,y′

=

(∑
x′∈X

ex′,y

)∑
y′∈Y

dY (y′, y)ex,y′

=
∑
y′∈Y

dY (y′, y)ex,y′

Remark 2.5.5. Let U = [ex,y]x∈X,y∈Y . Then the above relations imply that U is a magic unitary

matrix and that (1⊗DX)U = U(1⊗DY ). Equivalently, for the weighted graph isomorphism for

minimal complete corresponding graphs G′, H ′ we have that (1⊗AG′)U = U(1⊗AH′) where we

note that the adjacency matrices for the graphs G′ and H ′ are identical to the distance matrix for

their corresponding metrics.

Thus, the game ∗-algebra A(Isom(X, Y )) can be viewed a non-commutative analogue of the

space of isometries from X to Y .

Definition 2.5.6. Motivated by Theorem 2.2.2, for two metric spaces (X, dX) and (Y, dY ) we define
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• X ∼=q Y if and only if there exists d and projections Ex,y ∈ Md such that U = (Ex,y) is a

unitary in Mn(Md) and (1⊗DX)U = U(1⊗DY ).

• X ∼=qa Y if and only if there exists projections Ex,y ∈ Rω such that U = (Ex,y) ∈ Mn(Rω)

is a unitary and (1 ⊗ DX)U = U(1 ⊗ DY ). Here, Rω is the hyperfinite II1 factor, and

interested readers can learn more in [1].

• X ∼=qc Y if and only if there exists projections Ex,y in some C∗-algebra A with a tracial

state such that U = (Ex,y) ∈Mn(A) is a unitary and (1⊗DX)U = U(1⊗DY ).

• X ∼=C∗ Y if and only if there exists projections Ex,y in some Hilbert space H such that

U = (Ex,y) ∈Mn(B(H)) is a unitary and (1⊗DX)U = U(1⊗DY ).

Remark 2.5.7. Given two metric spaces (X, dX) and (Y, dY ) with corresponding minimal com-

plete graphs G′, H ′, then since the two game ∗-algebrasA(Isom(X, Y )) andA(Iso(G′, H ′)) are

the same, we can see that, using the notation from [10], for any t ∈ {loc, q, qa, qc, C∗, A∗} we

have that X ∼=t Y if and only if G′ ∼=t H
′.
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3. QUANTUM SETS, GRAPHS, AND THEIR QUANTUM AUTOMORPHISM GROUPS

The examples of CQGs that feature in this paper are the quantum automorphism groups of

certain finite structures, such as sets, graphs, and their quantizations. In order to describe these

objects, we first quantize the notion of a (measured) finite set, then proceed to quantum graphs. All

of the definitions that follow are quite standard in the operator algebra literature [42, 3, 4, 38]. The

idea of a quantum set or a quantum graph also appears in [31, 32] using the language of special

symmetric dagger Frobenius algebras.

3.1 Quantum sets and graphs

Definition 3.1.1. A (finite, measured) quantum set is a pair X = (O(X), ψX), where O(X) is a

finite dimensional C∗-algebra and ψX : O(X)→ C is a faithful state.

We write |X| for dimO(X), and refer to this value as the cardinality or size of X .

The reason for our choice of notation is that when O(X) is commutative, Gelfand theory tells

us that we are really just talking about a finite set X (the spectrum of O(X)) equipped with a

probability measure µX defined ψX(f) =
∫
X
f(x)dµX(x) for each f ∈ O(X).

Let X = (O(X), ψX) be a quantum set. Let mX : O(X) ⊗ O(X) → O(X) and ηX : C →

O(X) be the multiplication and unit maps, respectively. In what follows, we will generally only

be interested in a special class of finite quantum sets – namely those that are measured by a δ-form

ψX , which we now define:

Definition 3.1.2 ([4]). Let δ > 0. A state ψX : O(X)→ C is called a δ-form [4] if

mXm
∗
X = δ2ι,

where the adjoint is taken with respect to the Hilbert space structure on O(X) coming from the

GNS construction with respect to ψX .

For purposes of distinguishing between the Hilbert and C∗-structures on O(X), we denote this
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Hilbert space by L2(X).

The most basic examples of δ-forms are given by the uniform measure on the n-point set

X = [n] and the canonical normalized trace on Mn(C). In the first case, a simple calculation

shows that m∗(ei) = nei ⊗ ei, where (ei = e∗i = e2i )
n
i=1 is the standard basis of projections for

O(X), and so we have δ =
√
n. In the second case, one can show thatm∗(eij) = n

∑n
k=1 eik⊗ekj ,

where (eij)1≤i,j≤n are the matrix units for Mn(C). So in this case we have δ = n. More generally,

if we have a multimatrix decomposition O(X) =
⊕s

i=1Mn(i)(C) and ψX =
⊕s

i=1 Tr(Qi·) is

a faithful state (so 0 < Qi ∈ Mn(i)(C) and
∑

i Tr(Qi) = 1), then ψX is a δ-form if and only

if Tr(Q−1i ) = δ2 for all 1 ≤ i ≤ s. In particular, O(X) admits a unique tracial δ-form with

δ2 = dimO(X) given by ψX =
⊕s

i=1
n(i)
|X| Tr(·).

Convention 3.1.3. Unless otherwise stated, we assume from now on that the quantum sets we

consider are equipped with δ-forms.

We now endow quantum sets with an additional structure of a quantum adjacency matrix,

turning them into quantum graphs. The following definition of a quantum adjacency matrix/graph

is a generalization of the [31, Definition 5.1] to our framework.

Definition 3.1.4. Let X be a quantum set equipped with a δ-form ψX . A self-adjoint linear map

AX : L2(X)→ L2(X) is called a quantum adjacency matrix if it has the following properties

1. mX(AX ⊗ AX)m∗X = δ2AX .

2. (ι⊗ η∗XmX)(ι⊗ AX ⊗ ι)(m∗XηX ⊗ ι) = AX

3. mX(AX ⊗ ι)m∗X = δ2ι

We call the triple X = (O(X), ψX , AX) a quantum graph.

Remark 3.1.5. In the special case where O(X) is equipped its unique tracial δ-form, then the

definition of a quantum graph given here is equivalent to the one given in [31]. In addition, as

explained in [31], a quantum graph X = (O(X), ψX , AX), where O(X) is a commutative C∗-

algebra, captures precisely the notion of a classical graph. Indeed, in this case the spectrum X
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of O(X) is a finite set and ψX is the uniform probability measure on X . If we write AX as a

matrix AX = [aij]i,j∈X with respect to the canonical orthonormal basis of normalized projections

(
√
nei)

n
i=1 ⊂ L2(X), then conditions (1), (2) and (3) say, respectively, that

a2ij = aij, aij = aji, aii = 1 (i, j ∈ X).

In other words, X is the vertex set of a classical graph (as defined in Section 2.3) with adjacency

matrixAX−In. Thus, in the quantum definition of a graph, we choose to work with reflexive graphs

((v, v) ∈ E(X) ∀v ∈ V (X)). This choice is purely cosmetic from the perspective of (quantum)

symmetries of graphs, in the sense that we have a bijection between (quantum) symmetries of

reflexive graphs and those of their irreflexive versions.

Remark 3.1.6. Note that any quantum set X equipped with a δ-form ψX can be trivially upgraded

to a quantum graph in two ways. The first way is by declaring AX = δ2ψX(·)1. The second is

by declaring AX = ι. In the case of classical finite sets X , these constructions correspond to

the complete graph K|X| and its (reflexive) complement K|X|, respectively. For general quantum

sets X equipped with the quantum adjacency matrix AX = δ2ψX(·)1, we will call these graphs

quantum complete graphs. For a general quantum graph X , we can also talk about its (reflexive)

complement X , which is given by X = (O(X), ψX , AX) with AX = δ2ψX(·)1 + ι−AX . With this

definition we have that the complement of a quantum complete graphX is the “edgeless” quantum

graph X = (O(X), ψX , ι).

Remark 3.1.7. An equivalent definition of a quantum graph has been defined in [43, 44]: a

quantum graph is a triple (S,M,Mn) whereM is a non-degenerate von Neumann algebra and

M ⊆ Mn, S ⊆ Mn(C) is an operator system and S is an M′ −M′-bimodule with respect to

matrix multiplication.

To see the connection between these two definitions, we fix the tracial δ-form ψ and we can set

M = B ⊆ B(L2(X)). We then set theM′ −M′ bimodule S to be P (B(L2(X))) where P is the

projection mapping the operator T ∈ B(L2(X)) to δ−2mX(AX ⊗ T )m∗X . However, the relation
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between the two definitions is not one-to-one, as two distinct quantum graphs (B, ψX , AX) in the

sense of [31] can yield the sameM′ −M′-bimodule S.

We now introduce the quantum automorphism groups of quantum graphs. The definition of

these quantum automorphism groups follows along the same lines as for the quantum automor-

phism groups of classical graphs [5] and also the quantum automorphism groups of quantum sets

[42, 3, 4].

Definition 3.1.8. Let X = (O(X), ψX , AX) be a quantum graph with n = |X| and fix an or-

thonormal basis {ei}ni=1 for L2(X). Define O(GX) to be the universal unital ∗-algebra generated

by the coefficients uij of a unitary matrix u = [uij]
n
i,j=1 ∈ Mn(O(GX)) subject to the relations

making the map

ρX : O(X)→ O(X)⊗O(GX); ρX(ei) =
∑
k

ej ⊗ uji

a unital ∗-homomorphism satisfying the AX-covariance condition ρX(AX ·) = (AX ⊗ ι)ρX .

The notation O(GX) is meant to convey the notion that the algebra consists of representative

functions on a CQG GX . Specifically, it is the “largest” CQG acting on X so as to preserve the

measure ψX and graph structure AX . This is formalized in the following result, whose proof is a

straightforward application of the universality implicit in Definition 3.1.8.

Proposition 3.1.9. The ∗-algebra A = O(GX) admits a Hopf ∗-algebra structure defined by

∆(uij) =
n∑
k=1

uik ⊗ ukj, S(uij) = u∗ji, ε(uij) = δij (1 ≤ i, j ≤ n).

Furthermore, the action of GX on X given by ρX preserves ψX in the sense that

(ψX ⊗ ι)ρX = ψX(·)1 : O(X)→ O(GX).

We call GX the quantum automorphism group of the quantum graph X .
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Proof. This is a direct computation that we leave to the reader. In fact a proof of this result will

also follow as special case of the more general arguments presented following Remark 4.2.3.

Remark 3.1.10. Quantum automorphism groups are natural quantum analogues of their classical

counterparts. Indeed, the abelianization of O(GX) is exactly O(Aut(X)), the algebra of complex-

valued functions on the group of automorphisms of the classical graph X .

Example 3.1.11. When X is a quantum complete graph, then GX is none other than Wang’s

quantum automorphism group of the finite space (O(X), ψX) [42, 4]. In particular, the quantum

automorphism group of the classical complete graphKn is precisely the quantum symmetric group

S+
n of Example 1.3.3.

3.2 W ∗-quantum metric spaces

The definitions of aW ∗-quantum metric space and the theorems that follow in this section were

introduced in [27]. They have since been studied in [14].

A non-commutative analogue of a metric space, V = {Vt}t≥0, was defined in [27] using the

language of von Neumann algebras, called a W ∗-quantum metric. The intuition behind their defi-

nition is that each family Vt is a non-commutative analogue of pairs of points (x, y) whose distance

is at most t, while motivation for this definition comes primarily from the standard model of quan-

tum error correction. The definition of aW ∗-quantum metric is related to other models of quantum

metric spaces: Connes’ notion of a spectral triple produces a W ∗-quantum metric [18], and every

W ∗-metric produces Reiffel’s Lipschitz seminorm [36].

Definition 3.2.1. ([27], Definition 2.3) A W ∗- quantum metric on a von Neumann algebraM ⊆

B(H) is a one-parameter family of weak* closed operator systems Vt ⊆ B(H), t ∈ [0,∞) such

that

1. VsVt ⊆ Vs+t for all s, t ≥ 0

2. Vt = ∩s>tVs for all t ≥ 0

30



3. V0 =M′ whereM′ is the commutant ofM inside B(H)

We say a W ∗-quantum metric space is the pair (M,H, {Vt}t≥0) of a von Neumann algebra

M⊆ B(H) together with a W ∗-quantum metric {Vt}.

It is easy to see that the Vt are nested. It can also be seen that V0 is a von Neumann algebra.

Given a (possibly infinite) metric space (X, d), we can view the classical metric space as an

example of a W ∗-quantum metric on an abelian von Neumann algebra. We take the von Neumann

algebraM = `∞(X) of bounded multiplication operators on `2(X) and define {VXt } by

VXt = spanwk∗{Vxy ∈ B(`2(X)) | d(x, y) ≤ t}

= {A ∈ B(`2(X)) | 〈Aey, ex〉 = 0 if d(x, y) > t}

where Vx,y ∈ B(`2(X)) is the rank one operator Vxy : g 7→ 〈g, ey〉ex and {ex}x∈X is the standard

orthonormal basis on `2(X).

Proposition 3.2.2. ([27], Proposition 2.5.) The construction above gives us a W ∗-quantum metric

space.

Conversely, if we have a W ∗-quantum metric {Vt} on the commutative von Neumann algebra

M = `∞(X), then we may set

d(x, y) = inf{t | 〈Aey, ex〉 6= 0 for some A ∈ Vt}

to obtain a metric on X . Thus, we have obtained a correspondence between W ∗-quantum metrics

on abelian von Neumann algebras and classical metric spaces.

To motivate Definition 3.2.1, given a classical metric space (X, d) we may look at the family

of relations given by Rt = {(x, y) ∈ X×X | d(x, y) ≤ t}. There is then the following correspon-

dence between a classical metric space, this family of relations, and any quantum metric space as

defined above:
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d(x, x) = 0 ↔ R0 is the diagonal relation ↔ I ∈M′ = V0

d(x, y) = d(y, x) ↔ Rt = RT
t ↔ Vt = V∗t

d(x, z) ≤ d(x, y) + d(y, z) ↔ RsRt ⊆ Rs+t ↔ VsVt ⊆ Vs+t

where RT
t denotes the transpose of the relation, that is, (x, y) ∈ Rt if and only if (y, x) ∈ RT

t . We

can also note here that the relations Rt are nested, as are the Vt. From a family of relations {Rt}t≥0

with the properties above, we can see that the relations define a unique metric d(x, y) = inf{t |

(x, y) ∈ Rt}.

Example 3.2.3. One can obtain aW ∗-quantum metric from a classical graphG = (V (G), E(G)).

If |V (G)| = n then we may equip the space V (G) with the shortest path metric coming from the

graph. We then set

V1 = span{Eij | i = j or i is adjacent to j} ⊆Mn(C) = B(`2(V (G)))

where Eij ∈Mn(C) is the matrix of all zeros with a one in the (i, j) entry. We can then set the

larger sets to be

Vk = Vk1 = span{A1 . . . Ak | A1, . . . , Ak ∈ V1} ⊆Mn(C).

For any non-integer t, we set Vt = Vbtc. It is not hard to check that this gives us a W ∗-quantum

metric on the von Neumann algebraM = Mn(C) = B(`2(V (G))).

A similar argument holds for the class of quantum graphs, an operator space generalization of

classical graphs.

Example 3.2.4. Our goal is to obtain a W ∗-quantum metric from a quantum graph X =

(S,M,Mn). We set V0 = M′, and if we assume S is non-reflexive, then V1 = S is orthogo-

nal toM′, that is, V1 ⊆M′⊥.
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Once we have V1, then we may set Vk = Vk1 as before.

This connects to the quantum adjacency matrix definition: for operators T , we may consider

the compression 1
δ2
m(AX⊗T )m∗ which classically corresponds to the Schur multiplicationAX ·T .

When we think of Schur multiplication by the adjacency matrix, it produces V1, that is, it kills all

matrix units that aren’t adjacent.

3.3 Quantum isometry group of W ∗-quantum metric spaces

The aim of this section is to generalize Banica’s construction of the quantum isometry group

for classical metric spaces to the class of W ∗-quantum metric spaces. We define the quantum

isometry group of the W ∗-quantum metric spaces, answering the question which has been asked

in [23].

We first recall Banica’s quantum isometry group for finite metric spaces.

Definition 3.3.1. ([5]) The quantum isometry group of a finite metric space (X, d) is defined to be

A = O(GX) where GX = (A,∆) is the quotient of O(S+
n ) by the ideal generated by the relations

UD = DU , where D = [d(x, y)]x,y∈X is the distance matrix. That is,

O(GX) = O(S+
n )/〈UD = DU〉.

Comultiplication is given by ∆ : A → A⊗A which maps uij 7→
∑

k uik ⊗ ukj .

3.3.1 Actions of a quantum group on a W ∗-quantum metric

Every compact quantum group is equipped with a unique left invariant weight, called the

Haar weight and denoted by h. For a compact quantum group G, we denote Cr(G) to be the

corresponding reduced C∗-algebra, that is, the image of C(G) under the GNS representation

πh : C(G) → B(L2(G)). We equip Cr(G) with a comultiplication ∆. We denote by L∞(G)

to be the von Neumann algebra generated by Cr(G) in B(L2(G)) and the extension of the corre-

sponding comultiplication L∞ → L∞(G)⊗L∞(G) will be denoted ∆G. An interested reader can

see [29, 28, 33] for more information.
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Definition 3.3.2. Given a compact quantum group G and a von Neumann algebraM, an action

of G onM is a normal injective unital ∗-homomorphism α :M→M⊗L∞(G) that satisfies the

action equation

(α⊗ idM) ◦ α = (idL∞(G)⊗∆G) ◦ α.

Definition 3.3.3. Let the compact quantum group G act on a von Neumann algebra M by α :

M→M⊗L∞(G). We call a state ψ α-invariant if (ψ ⊗ id)α = ψ(·)1.

It’s known that we are guaranteed to have an invariant state in certain circumstances [41].

Proposition 3.3.4. Consider a von Neumann algebra M with a faithful state φ and a compact

quantum group G. If the compact quantum group G acts onM by α : M → M⊗L∞(G), then

there exists a (not necessarily unique) α-invariant state ψ with (ψ ⊗ 1)α(x) = ψ(x)1.

The proof follows by letting ψ(x) = (φ ⊗ h)α(x) where h is the Haar measure and one can

view this as an average relative to the action GyαM. Since φ is faithful, one can show ψ is also

faithful.

To motivate the next definition, we note that given a representation U ∈ M(K(H) ⊗ C(G)),

we automatically get an action

α : B(H)→ B(H)⊗L∞(G)

T 7→ U∗(T ⊗ 1)U.

(3.1)

Definition 3.3.5. LetM ⊆ B(H) be a von Neumann algebra and let G be a compact quantum

group. Given a von Neumann algebraic action

α :M→M⊗L∞(G)

we say the action is unitarily implemented if there exits a unitary representation U ∈M(K(H)⊗

Cr(G)) such that
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α(x) = U∗(x⊗ 1)U x ∈M.

It was shown in [41] that there always exists a unitarily implemented action from α : M →

M⊗L∞(G) for free if we have an invariant state. By Prop 3.3.4, if we have the action α and fix

any faithful state then we can obtain a faithful α-invariant state. With respect to the GNS Hilbert

space for M, we can realize this as unitarily implemented by averaging the state with the Haar

measure.

We may then naturally extend such a unitarily implemented action given by Equation (3.1) to

an action on B(H).

Definition 3.3.6. Given a W ∗-quantum metric space (M,H,Vt) withM⊆ B(H) and a compact

quantum group G, we say that G acts on the W ∗-quantum metric space if there is a unitarily

implemented, von Neumann algebraic action α :M→M⊗ L∞(G) such that

α(Vt) ⊆ Vt⊗L∞(G) ∀t ≥ 0

Remark 3.3.7. For every compact quantum group, there exists the universal C∗-algebra associ-

ated to G, denoted Cu(G). Whenever one has some representation U ∈ M(K(H) ⊗ Cr(G)),

there exists a corresponding representation of the universal version Û ∈M(K(H)⊗Cu(G)). See

Proposition 3.13. in [28] for more details.

Definition 3.3.8. Given a possibly infinite dimensional W ∗-quantum metric space (M,H,Vt), we

define a universal compact quantum group GV acting on the quantum metric space by requiring

the following two properties:

1. Cu(GV) is generated by a fundamental representation U ∈ M(K(H) ⊗ Cu(GV)), where

Cu(GV) is the universal C∗-algebra associated to G.

2. for any compact quantum group G acting on (M,H,Vt) in the sense of Definition 3.3.6

with implementing unitary representation Û ∈M(K(H)⊗Cu(G)), there exists a surjective
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∗-homomorphism Cu(GV)→ Cu(G) which maps U 7→ Û .

We define the quantum isometry group of theW ∗-quantum metric space,GV , to be the universal

compact quantum group (if such a universal object exists) acting on the quantum metric space as

in Definition 3.3.6.

It’s not clear whether such a universal object exists in general. However, it can be shown that

one exists in the finite dimensional case, which leads us into our next section.

3.3.2 Finite dimensional case

It is known that the quantum metrics do not depend on the choice of Hilbert space on which

M is represented, and this result will be crucial to us.

Theorem 3.3.9. ([27], Theorem 2.4.) LetH1 andH2 be Hilbert spaces and letM1 ⊆ B(H1) and

M2 ⊆ B(H2) be isomorphic von Neumann algebras. Then any isomorphism induces an order

preserving 1-1 correspondence between the quantum metrics onM1 andM2.

Therefore, for the following definition we may assume that we’re representing Vt ⊆

B(L2(M)) in the regular representation ofM where L2(M) = L2(M, ψ) where ψ is the unique

δ-map.

Definition 3.3.10. LetM⊆ B(H) be a finite dimensional von Neumann algebra with its canonical

δ-trace fixed. The quantum automorphism group of M, denoted Gaut, is the universal compact

quantum group with the following properties:

1. Cu(Gaut) is generated by the entries of a representation U ∈ B(H)⊗ Cu(Gaut)

2. By identifying H = M as vector spaces, then we define the trace-preserving unital ∗-

homomorphism δ onM as

δ :M→M⊗ Cu(Gaut)

ej 7→
∑
k

ek ⊗ ukj
(3.2)
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where U = [uij] is the fundamental unitary representation.

This U is a unitary representation of the compact quantum group using the natural comultipli-

cation ∆(uij) =
∑n

k=1 uik ⊗ ukj if and only if δ as defined above is an action.

Since we assume that δ is a trace-preserving unital ∗-homomorphism, [5] shows that U is

automatically unitary.

Now, for any action α :M→M⊗ C(G) that preserves the canonical trace, it was shown in

[41] that for the Hilbert spaceH = L2(M) = L2(M, ψ), there always exists a unitary representa-

tion V ∈ B(H)⊗ C(G) that implements α via α(T ) = V ∗(T ⊗ 1)V for each T ∈M.

Definition 3.3.11. LetM be a finite dimensional von Neumann algebra. Fix aW ∗-quantum metric

(Vt)t≥0, where by Theorem 3.3.9 we may assume that the metric space is represented on the GNS

Hilbert space, (Vt) ⊆ B(L2(M)).

We define the quantum isometry group O(GV) to be the quantum subgroup of Gaut generated

by uij where the map δ in (3.2) is a ψ-preserving ∗-homomorphism and the conjugation action αV

given by

αV : B(L2(M))→ B(L2(M))⊗O(GV)

T 7→ U(T ⊗ 1)U∗
(3.3)

leaves the Vt invariant, i.e. αV(Vt) ⊆ Vt ⊗O(GV) for all t.

Here, GV will be of Kac type. Indeed, GV is a quantum subgroup of Gaut, the quantum auto-

morphism group of a tracial von Neumann algebra, which is known to be of Kac type.

Proposition 3.3.12. Let (X, d) be a classical metric space, and consider the construction of the

W ∗-quantum metric space as in Proposition 3.2.2, withM = `∞(X) and H = `2(X). Then the

quantum isometry group of the metric space is the same as the quantum isometry group of the

corresponding W ∗-quantum metric space, that is, GV ∼= GX .

Proof. Banica’s (GX , U) can be seen to satisfy the properties of GV and so GX < GV .
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To see the inclusion GV < GX , by the properties defining the quantum automorphism group,

we know the fundamental representation U of GV is a magic unitary. Therefore, GV < S+
n where

n = |X|. We need to check that U(D ⊗ 1)U∗ = D follows from the invariance of αV .

For x, y ∈ X with d(x, y) ≤ t, we know that αV(Vxy) ∈ VXt , and so we may write it as

αV(Vxy) =
∑

d(s,k)≤t Vsk ⊗ xsk for some xsk ∈ C(G). By the definition of αV , we see that

αV(Vxy) =
∑

s,k Vsk ⊗ uxsuyk. Consider a, b ∈ X with d(a, b) > t. We may start with

∑
s,k,d(s,k)≤t

Vsk ⊗ xsk =
∑
s,k

Vsk ⊗ uxsuyk

We multiply by (Vaa ⊗ 1) on the left and by (Vbb ⊗ 1) on the right to obtain

∑
s,k,d(s,k)≤t

VaaVskVbb ⊗ xsk =
∑
s,k

VaaVskVbb ⊗ uxsuyk. (3.4)

We will use the fact that VaaVskVbb = δs=aδk=bVab. Thus, the sum on the left hand side of

equation (3.4) equals zero since d(s, k) = d(a, b) > t. On the right hand side of equation (3.4), the

sum simply condenses down to Vab ⊗ uxauyb. Therefore

0 = Vab ⊗ uxauyb.

So indeed, if d(x, y) 6= d(a, b) then VaxVby = 0 implying

0 = (VaxVby)
∗ = V ∗byV

∗
ax = VbyVax.

Similarly, by using the antipode or considering an analogous β-action, it can be shown that

VxaVyb = 0 = VybVxa.

We now claim that this is equivalent toU(D⊗1)U∗ = D. Indeed, the (i, j) entry ofU(D⊗1)U∗

can be calculated as follows:
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[U(D ⊗ 1)U∗]ij =
∑
k,s

d(k, s)uikujs

=
∑

k,s,d(i,j)=d(k,s)

d(i, j)uikujs

= d(i, j)
∑

k,s,d(i,j)=d(k,s)

uikujs

= d(i, j)
∑
k,s

uikujs

= d(i, j)

(∑
k

uik

)(∑
j

ujs

)

= d(i, j) · 1 = d(i, j)

So then GV < GX .

Remark 3.3.13. Extensions of Banica’s quantum isometry group on classical metric spaces were

studied in [35], where quantum isometry groups of quantum metric spaces in the framework of

Rieffel is studied. Although both our definition and theirs agrees with Banica’s definition in the

classical sense, it would be interesting to further investigate the connection between the two exten-

sions.
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4. BIGALOIS EXTENSIONS

4.1 Monoidal equivalence and bigalois extensions

For a CQG G, the representation category of G, Rep(G), has a lot of nice structure. In partic-

ular it is an example of a so called strict C∗-tensor category with conjugates. See [33] for more

details.

We now come to a notion of central importance in this work: monoidal equivalence of compact

quantum groups. Let G be a CQG. Denote by Irr(G) the set of equivalence classes of irreducible

objects in Rep(G).

Definition 4.1.1 ([7, 9]). Let G1, G2 be two compact quantum groups. We say that G1 and G2 are

monoidally equivalent, and write G1 ∼mon G2, if there exists a bijection

ϕ : Irr(G1)→ Irr(G2)

together with linear isomorphisms

ϕ : Mor(u1 ⊗ . . .⊗ un, v1 ⊗ . . .⊗ vm)→ Mor(ϕ(u1)⊗ . . .⊗ ϕ(un), ϕ(v1)⊗ . . .⊗ ϕ(vm))

such that ϕ(1G1) = 1G2 (1Gi
being the trivial representation of Gi), and such that for any mor-

phisms S, T ,

ϕ(S ◦ T ) = ϕ(S) ◦ ϕ(T ) (whenever S ◦ T is well-defined)

ϕ(S∗) = ϕ(S)∗

ϕ(S ⊗ T ) = ϕ(S)⊗ ϕ(T ).

A monoidal equivalence betweenG1 andG2 means that the strict C∗-tensor categories Rep(Gi)

are unitarily monoidally equivalent. More precisely, the maps ϕ defined above canonically extend
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to a unitary tensor functor ϕ : Rep(G1)→ Rep(G2) that is fully faithful (i.e., ϕ defines an isomor-

phism between Mor(u, v) and Mor(ϕ(u), ϕ(v)) for any objects u, v ∈ Rep(G1)) and is essentially

surjective (i.e., every object in Rep(G2) is of the form ϕ(u) for some u ∈ Rep(Gi)).

We now discuss an equivalent, but somewhat more concrete, way to think about monoidal

equivalence of compact quantum groups. The key object is that of a bigalois extension, which has

its origins in Hopf algebra theory, but is adapted here to the analytic setting of CQGs.

Let A = O(G) be a Hopf ∗-algebra of representative functions on a CQG G. A left A ∗-

comodule algebra is a unital ∗-algebra Z equipped with a unital ∗-homomorphism α : Z → A⊗Z

satisfying (ι ⊗ α)α = (∆ ⊗ ι)α and (ε ⊗ ι)α = ι. Similarly, a right A ∗-comodule algebra

is a unital ∗-algebra Z equipped with a unital ∗-homomorphism β : Z → Z ⊗ A satisfying

(β ⊗ ι)β = (ι⊗∆)β and (ι⊗ ε)β = ι.

A left A ∗-comodule algebra (Z, α) is called a left A Galois extension if the linear map

κl : Z ⊗ Z → A⊗ Z; κl(x⊗ y) = α(x)(1⊗ y)

is bijective. Similarly, a right A ∗-comodule algebra (Z, β) is called a right A Galois extension if

the linear map

κr : Z ⊗ Z → Z ⊗ A; κr(x⊗ y) = (x⊗ 1)β(y)

is bijective. Finally, let A and B be Hopf ∗-algebras. A unital ∗-algebra Z is called an A − B

bigalois extension if it is both a left A Galois extension and a right B Galois extension, and Z is

an A− B-bicomodule algebra. I.e., if α, β denote the left and right comodule maps, respectively,

then we have the equality of maps

(ι⊗ β)α = (α⊗ ι)β : Z → A⊗ Z ⊗B.

Remark 4.1.2. The notion of a (bi)galois extension should be regarded as a quantum analogue of

the familiar notion of a (bi)torsor (or principle homogeneous (bi)bundle) in the context of group

41



actions: If G is a (finite) group and G y X is an action of G on a finite space X , we call X a

(left) G-torsor if the action is free and transitive. This is equivalent to saying that the canonical

map

G×X → X ×X; (g, t) 7→ (g · t, t)

is bijective. Letting O(X) denote the ∗-algebra of functions on X , then O(X) is a left O(G)

∗-comodule algebra with the map

α : O(X)→ O(G)⊗O(X) ∼= O(G×X)

α(f)(g, t) = f(g · t).

With these definitions, it is clear that Gy X is free and transitive if and only if

κl : O(X)⊗O(X)→ O(G)⊗O(X)

κl(x⊗ y)(g, t) = α(x)(1⊗ y)(g, t) = x(g · t)y(t)

is bijective, i.e., if and only if O(X) is a left O(G)-galois extension. Similar statements hold for

right G-spaces and left-right G1-G2-spaces.

In the following, we will be interested in bigalois extensions which admit non-zero C∗-

envelopes. The main way in which this is achieved is by considering necessary and sufficient

conditions for the existence of invariant states on bigalois extensions. In what follows, a state on

a unital ∗-algebra Z is a linear functional ω : Z → C such that ω(1) = 1 and ω(z∗z) ≥ 0 for all

z ∈ Z.

Definition 4.1.3. Let Z be an A−B-bigalois extension. A state ω : Z → C is called left-invariant

if (ι⊗ ω)(z) = ω(z)1A for each z ∈ Z, and it is called right-invariant if (ω ⊗ ι)(z) = ω(z)1B for

each z ∈ Z. We call ω bi-invariant if it is both left and right-invariant.

Example 4.1.4. The Hopf ∗-algebra A = O(G) of representative functions on a compact quantum
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groupG is a natural example of anA−A-bigalois extension admitting a bi-invariant state. Indeed,

just take ω = h, the Haar state on A.

The following theorem summarizes some useful properties of bi-invariant states on bigalois

extensions. It is an amalgamation of various results in [7, 9, 37].

Theorem 4.1.5. Let G1, G2 be compact quantum groups with A = O(G1) and B = O(G2). Let

Z be an A−B-bigalois extension. Then we have the following.

1. Any left/right/bi-invariant state ω : Z → C is unique and faithful (if it exists).

2. The following are equivalent:

(a) Z admits a non-zero ∗-representation as bounded linear operators on a Hilbert space.

(b) Z admits a state.

(c) Z admits a bi-invariant state.

(d) Z admits a left (resp. right)-invariant state.

3. If Z admits a bi-invariant state ω, denote by Bu(G1, G2) 6= 0 the universal C∗-algebra

generated by Z and by Br = πω(Z), the C∗-algebra generated by the GNS representation

with respect to ω. Then ω extends to a KMS state on both Bu and Br. Moreover, ω is a

tracial state if and only if both G1 and G2 are of Kac type. (I.e., the Haar states on both

O(Gi) are tracial)

Theorem 4.1.6 ([7, 9]). Let G1, G2 be compact quantum groups. Then G1 and G2 are monoidally

equivalent if and only if there exists an O(G1) − O(G2)-bigalois extension Z equipped with a

bi-invariant state ω.

We refer the reader to [33, Theorem 2.3.11] or [9, Theorem 3.9 and Proposition 3.13] for a

precise description of the the bigalois extension (Z, ω) induced by the monoidal equivalence in

Theorem 4.1.6.
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We end this section by stating a simple criterion due to Bichon [7] (for compact matrix quantum

groups) for a bigalois extension to admit an invariant state ω. First we need some definitions.

Let n ∈ N and Fi ∈ GLn(C). We define O(U+
F1
, U+

F2
) to be the unital ∗-algebra generated by

the coefficients zij of a n1 × n2 matrix z = [zij]1≤i≤n1
1≤j≤n2

∈ Mn1,n2(O(U+
F1
, U+

F2
)) satisfying the

relations making both z and F1z̄F
−1
2 unitary, where z̄ = [z∗ij]. When F1 = F2 = F , note that

O(U+
F , U

+
F ) = O(U+

F ) is the Hopf ∗-algebra of representative functions on the universal unitary

quantum group U+
F introduced earlier. We also note that if O(U+

F1
, U+

F2
) 6= 0 then O(U+

F1
, U+

F2
) is

an O(U+
F1

)−O(U+
F2

)-bigalois extension with respect to the bicomodule structure given by

αF1,F2 : O(U+
F1
, U+

F2
)→ O(U+

F1
)⊗O(U+

F1
, U+

F2
); αF1,F2(zij) =

n1∑
k=1

uik ⊗ zkj

βF1,F2 : O(U+
F1
, U+

F2
)→ O(U+

F1
, U+

F2
)⊗O(U+

F2
); βF1,F2(zij) =

n2∑
l=1

zil ⊗ vlj,

where u = [uij], v = [vij] are the fundamental representations of U+
F1
, U+

F2
, respectively.

Theorem 4.1.7 (Proposition 6.2.6 in [7]). Let G be a compact matrix quantum group and (Z, α) a

leftO(G)-Galois extension. Let F ∈ GLn(C) be such thatG < U+
F (with corresponding surjective

morphism π : O(U+
F ) → O(G)). If there exists F1 ∈ GLn1(C) and a surjective ∗-homomorphism

σ : O(U+
F , U

+
F1

) → Z satisfying α ◦ σ = (π ⊗ σ)αF,F1 , then Z admits a left-invariant state

ω : Z → C.

4.2 Bigalois extensions and quantum isomorphisms of graphs 1

The aim of this section is to show that a quantum isomorphism between two graphs X and Y

is nothing other than a (quotient of a) O(GY )-O(GX)-bigalois extension in disguise. We begin

by extending the definition of the graph isomorphism game ∗-algebra A(Iso(X, Y )) to include

quantum graphs.

1Reprinted with permission from “Bigalois extensions and the graph isomorphism game” by M. Brannan, A.
Chirvasitu, K. Eifler, S. Harris, V. Paulsen, X. Su, and M. Wasilewski, Communications in Mathematical Physics,
375:1777-1809, 2020.
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Definition 4.2.1. Let X = (O(X), ψX , AX) and Y = (O(Y ), ψY , AY ) be quantum graphs with

|X| = n and |Y | = m, and fix orthonormal bases {ej} and {fi} for O(X) and O(Y ) relative to

ψX and ψY respectively. Let O(GY , GX) be the universal ∗-algebra generated by the entries pij

of a unitary matrix

p = [pij]ij ∈ O(GY , GX)⊗B(L2(X), L2(Y ))

with relations ensuring that

ρY,X : O(X)→ O(Y )⊗O(GY , GX); ej 7→
∑
i

fi ⊗ pij

is a unital ∗-homomorphism satisfying

ρY,X(AX ·) = (AY ⊗ ι)ρY,X . (4.1)

Our first observation is that the above morphism ρY,X , if it exists, is automatically state-

preserving.

Lemma 4.2.2. AssumeO(GY , GX) 6= 0. Then the morphism ρY,X : O(X)→ O(Y )⊗O(GY , GX)

is state-preserving in the sense that

(ψY ⊗ ι)ρY,X = ψX(·)1 : O(X)→ O(GY , GX). (4.2)

Proof. Consider the matrix p = [pij]ij ∈ O(GY , GX)⊗B(L2(X), L2(Y )), viewed canonically as

a linear map

p : L2(X)⊗O(GY , GX)→ L2(Y )⊗O(GY , GX); p(ξ ⊗ a) =
∑
i,j

|fi〉〈ei|ξ〉 ⊗ pija.

It then follows that ρY,X(ξ) = p(ξ ⊗ 1) for each ξ ∈ L2(X) (here and below we are identifying

L2(X) and L2(Y ) with O(X) and O(Y )). Consider now the O(GY , GX)-valued sesquilinear
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forms on L2(X)⊗O(GY , GX) and L2(Y )⊗O(GY , GX) given by

〈ξ1⊗a|ξ2⊗b〉L2(X)⊗O(GY ,GX) = b∗aψX(ξ∗2ξ1) & 〈η1⊗a|η2⊗b〉L2(Y )⊗O(GY ,GX) = b∗aψY (η∗2η1).

Then a simple calculation using the fact that p∗p = 1 and p(1⊗ 1) = ρY,X(1) = 1⊗ 1 gives

(ψY ⊗ ι)ρY,X(ξ) = (ψY ⊗ ι)p(ξ ⊗ 1)

= 〈p(ξ ⊗ 1)|1⊗ 1〉L2(Y )⊗O(GY ,GX)

= 〈p(ξ ⊗ 1)|p(1⊗ 1)〉L2(Y )⊗O(GY ,GX)

= 〈p∗p(ξ ⊗ 1)|1⊗ 1〉L2(X)⊗O(GY ,GX)

= 〈(ξ ⊗ 1)|1⊗ 1〉L2(X)⊗O(GY ,GX)

= ψX(ξ)1.

Remark 4.2.3. When the two quantum graphs coincide we haveO(GX , GX) = O(GX) (the Hopf

∗-algebra of polynomial functions on the quantum automorphism group GX) and ρX,X = ρX . For

classical graphsX, Y , we haveO(GY , GX) = A(Iso(Y,X)). Indeed, the fact that ρY,X is a unital

∗-homomorphism intertwining the quantum adjacency matrices AX and AY says exactly that the

unitary matrix p = [pij] satisfies (1 ⊗ AY )p = p(1 ⊗ AX) and has entries which are self-adjoint

projections satisfying
∑

i pji = 1 =
∑

j pji, pjipjl = δilpji, and pijplj = δipij . Compare with

Proposition 2.3.1 and Remark 2.3.2. See also [2, 30].

With the above in mind, we now provide a natural extension of the notion of quantum isomor-

phism to our quantum graphs. Compare with [31].

Definition 4.2.4. LetX, Y be quantum graphs. We say thatX is algebraically quantum isomorphic

to Y ifO(GY , GX) 6= 0, and write X ∼=A∗ Y . IfO(GY , GX) admits a non-zero C∗-representation,

then we say that X is C∗-algebraically quantum isomorphic to Y , and write X ∼=A∗ Y . Finally,
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we say X ∼=qc Y if O(GY , GX) admits a tracial state (following the existent notation for classical

graphs).

For the remainder of the present discussion we fix two quantum graphs X, Y as above and

assume that the ∗-algebra O(GY , GX) is non-zero. Our aim is to show that O(GY , GX) admits a

natural structure as a O(GY )-O(GX) bigalois extension.

Consider the comodule-algebra structure map

ρY : O(Y )→ O(Y )⊗O(GY ).

By the universality of ρY,X , the composition

(ρY ⊗ id) ◦ ρY,X : O(X)→ O(Y )⊗O(GY )⊗O(GY , GX)

must factor as (id⊗α) ◦ ρY,X for a unique ∗-algebra morphism

α : O(GY , GX)→ O(GY )⊗O(GY , GX)

given simply by

α(pij) =
∑
k

uik ⊗ pkj,

where u = [uij] is the fundamental representation of O(GY ).

Similarly, O(GY , GX) has a right O(GX) ∗-comodule algebra structure given by

β : O(GY , GX)→ O(GY , GX)⊗O(GX); β(pij) =
∑
k

pik ⊗ vkj,

where v = [vij] is the fundamental representation of O(GX). It is also clear that O(GY , GX) is an

O(GY )−O(GX) bicomodule with respect to α and β.
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Continuing in the same vein, we can define “cocomposition” ∗-morphisms

γY : O(GY )→ O(GY , GX)⊗O(GX , GY ); γY (uij) =
∑
k

pik ⊗ qki

γX : O(GX)→ O(GX , GY )⊗O(GY , GX); γX(vij) =
∑
k

qik ⊗ pkj

where q = [qij] is the matrix of generators of O(GX , GY ). For example, to construct γY , we

consider the morphism

(ρY,X ⊗ ι)ρX,Y : O(Y )→ O(Y )⊗O(GY , GX)⊗O(GX , GY ).

By universality of ρY , there exists a unique morphism γY : O(GY )→ O(GY , GX)⊗O(GX , GY )

so that

(ρY,X ⊗ ι)ρX,Y = (ι⊗ γY )ρX,Y .

This map is readily seen to be given by the proposed formula above.

Thus far, the algebras O(GX), O(GY ), O(GY , GX) and O(GX , GY ) together with the maps

α and β, their analogues for O(GX , GY ), and γX , γY constitute a two-object cocategory C in the

sense of [8, Definition 2.1]: the four algebras are to be thought of as dual to “spaces of morphisms”

between two objects (x→ x for O(GX), x→ y for O(GY , GX), etc.), and the γ maps are dual to

morphism composition.

Next, we make C into a cogroupoid in the sense of [8, Definitions 2.3 and 2.4]: this entails

defining “coinversion” maps

SX,Y : O(GX , GY )→ O(GY , GX) (4.3)

SY,X : O(GY , GX)→ O(GX , GY ), (4.4)

which will require some preparation.
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Let F = FX ∈ Mn and G = FY ∈ Mm be matrices with the property that Fei = e∗i and

similarly for G, so that F = F−1 and G = G−1. Note that the involutivity of the morphisms

ρX : O(X)→ O(X)⊗O(GX)

ρY : O(Y )→ O(Y )⊗O(GY )

ρY,X : O(X)→ O(Y )⊗O(GY , GX)

is equivalent, respectively, to the equalities

(1⊗ F )ū = u(1⊗ F ) (4.5)

(1⊗G)v̄ = v(1⊗G) (4.6)

(1⊗G)p̄ = p(1⊗ F ) (4.7)

We will henceforth abuse notation and write uF for u(1 ⊗ F ), etc. Taking this into account, we

have

G−1pF = p and similarly F−1qG = q.

It is now a simple check to see that

fi 7→
∑
j

ej ⊗ p∗ij (4.8)

defines a unital algebra homomorphism

O(X)→ O(Y )⊗O(GY , GX)op. (4.9)

Applying G to both sides of (4.8), writing ej = FF−1ej and using

Fej = e∗j , Gfi = f ∗i ,
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it follows that (4.8) is involutive with respect to the modified ∗-structure ? on O(GY , GX)op given

by

(p∗)? = (F−1p∗G)t

(the ‘t’ superscript denoting the transpose). The defining universality property ofO(GX , GY ) then

implies that the morphism (4.9) given by (4.8) factors as

(ι⊗ SX,Y )ρX

for a conjugate-linear anti-morphism (4.3). SY,X is defined similarly, and in summary we have

SX,Y : q 7→ p∗, q∗ 7→ GtpF−t

SY,X : p 7→ q∗, p∗ 7→ F tpG−t

where the ‘t’ superscript means ‘transpose’ while ‘−t’ denotes ‘transpose inverse’.

The morphisms (4.3) and (4.4) enrich the above-mentioned cocategory C to a connected

cogroupoid in the sense of [8, Definitions 2.3 and 2.4].

We are now ready for the main result of this section.

Theorem 4.2.5. If O(GY , GX) is non-zero, then (O(GY , GX), α, β) is a O(GY )-O(GX)-bigalois

extension.

Proof. By [8, Proposition 2.8] this is an immediate consequence of C being a connected

cogroupoid. More precisely, the arguments therein show that the relevant linear maps
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κl : O(GY , GX)⊗O(GY , GX)→ O(GY )⊗O(GY , GX)

κl(x⊗ y) = α(x)(1⊗ y)

κr : O(GY , GX)⊗O(GY , GX)→ O(GY , GX)⊗O(GX)

κr(x⊗ y) = (x⊗ 1)β(y)

are bijective with explicit inverses given by

ηl : O(GY )⊗O(GY , GX)→ O(GY , GX)⊗O(GY , GX)

ηl = (ι⊗m)(ι⊗ SX,Y ⊗ ι)(γY ⊗ ι)

ηr : O(GY , GX)⊗O(GX)→ O(GY , GX)⊗O(GY , GX)

ηr = (m⊗ ι)(ι⊗ SX,Y ⊗ ι)(ι⊗ γX)

where m denotes the multiplication map in the appropriate algebra.

Theorem 4.2.5 puts some of the material in [30] in a category-theoretic perspective. To make

sense of this, we need to recall

Definition 4.2.6. The quantum orbital algebra of a (quantum) graph X is the endomorphism al-

gebra of O(X) as a comodule over O(GX). That is, the algebra of intertwiners Mor(u, u) ⊂

B(L2(X)), where u denotes the fundamental representation of GX .

In the case of classical graphs, this is not quite [30, Definition 3.10], but is equivalent to it by

[30, Theorem 3.11]. Note that [30, Theorem 4.2] follows from Theorem 4.2.5: the former says

that a quantum isomorphism between two (classical) graphs entails an isomorphism between their

quantum orbital algebras that identifies the respective adjacency matrices. Since by Theorem 4.2.5
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we have a category equivalence

Rep(GX) ' Rep(GY )

identifying O(X) on the left to O(Y ) on the right, this implements an isomorphism between the

endomorphism algebras of these two objects in the respective categories (i.e. the quantum orbital

algebras). Furthermore, the fact that this isomorphism identifies AX and AY follows from (4.1).

4.2.1 Existence of states on O(GY , GX)

Our next result shows that O(GY , GX) always admits a faithful bi-invariant state (and hence a

C∗-completion) whenever this algebra is non-zero.

Theorem 4.2.7. Let X, Y be quantum graphs. If O(GY , GX) 6= 0, then there exists a faithful bi-

invariant state ω : O(GY , GX) → C, and therefore we have a monoidal equivalence of compact

quantum groups GX ∼mon GY . Moreover, ω is tracial if and only if both GX and GY are of Kac

type.

Proof. Recall the matrices F = FX and G = FY from the preceding discussion. The equa-

tions (4.6) imply that we have surjective ∗-homomorphisms π : O(U+
FY

) → O(GY ) and

σ : O(U+
FY
, U+

FX
)→ O(GY , GX) satisfying α ◦ σ = (π⊗ σ)αFY ,FX

. By Theorems 4.1.5 and 4.1.7

O(GY , GX) then admits aO(GY )-O(GX)-invariant state (which is tracial precisely when GY , GX

are both of Kac type). By Theorem 4.1.6, GX ∼mon GY .

Corollary 4.2.8. Let X and Y be quantum graphs. Then the following are equivalent.

(1) X ∼=A∗ Y .

(2) X ∼=C∗ Y .

Moreover, if both X and Y are equipped with tracial δ-forms, then X ∼=qc Y .

Proof. (2) =⇒ (1) by definition, while the converse follows from Theorem 4.2.7. The same

theorem also shows that when GX and GY are Kac (as is the case if X and Y are equipped with

tracial δ-forms) O(GY , GX) is equipped with a trace. This proves the last claim.
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Restricting our attention to classical graphs X , and Y we arrive at one of the main results of

the paper.

Theorem 4.2.9. Let X and Y be classical graphs. Then the following conditions are equivalent.

1. X ∼=A∗ Y .

2. X ∼=qc Y .

3. X ∼=C∗ Y .

Proof. This is an immediate consequence of Corollary 4.2.8.

Remark 4.2.10. The above theorems show that the algebrasO(GY , GX) are non-zero in the cate-

gory of ∗-algebras if and only if O(GY , GX) admits a non-zero representation as bounded opera-

tors on Hilbert space. In other words, the ∗-algebra and C∗-algebra worlds coincide for this class

of examples.

One illustration of the distinction between ∗-algebras and C∗-algebras is in the behavior of

projections (i.e. self-adjoint idempotents). In a C∗-algebra, if one has self-adjoint idempotents

{p1, ..., pN} satisfying p1 + · · ·+ pN = 1, then necessarily pipj = 0, ∀i 6= j.

The situation is very different for ∗-algebras, however. While triples of projections with sum

1 still commute, quadruples need not. This can be seen, for instance, from [6]. There, the ring

generated by three idempotents a, b and c whose sum is also idempotent (d = 1 − (a + b + c)

thus being idempotent as well) is shown to have a basis as a free abelian group consisting of those

monomials in a, b and c such that

• no letter appears twice in succession;

• b never appears to the left of a.

This makes it clear that ab 6= 0. One can simply reprise this example over C (i.e. working with

complex algebras rather than rings) and superimpose a ∗-structure by requiring that a, b and c be
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self-adjoint. The result is a complex ∗-algebra with four non-orthogonal projections adding up to

1.

In fact, even more pathological examples exist. In [24] a machine-assisted proof is given that

the ∗-algebra A(Hom(K5, K4)) is non-trivial. This is a ∗-algebra with generators

{ex,a : 1 ≤ x ≤ 5, 1 ≤ a ≤ 4}

satisfying the usual relations, e∗x,a = e2x,a = ex,a, ex,aex,b = 0, when a 6= b,
∑4

a=1 ex,a = 1, ∀x,

and the relations, ex,aey,a = 0, x 6= y, prescribed by the graphs.

If one sets pa =
∑

x ex,a, then p2a = pa = p∗a, for 1 ≤ a ≤ 4. Hence, qa = 1 − pa are also

self-adjoint idempotents. However,

4∑
a=1

qa = 4 · 1−
4∑

a=1

pa = 4 · 1−
5∑

x=1

4∑
a=1

ex,a = 4 · 1− 5 · 1 = −1.

Thus, it is possible to have 4 self-adjoint idempotents sum to −1 in a ∗-algebra.

4.2.2 From monoidal equivalence to quantum isomorphism

Theorem 4.2.7 and corollary 4.2.8 show that for a pair of quantum graphs X, Y the condi-

tion X ∼=A∗ Y implies that the corresponding quantum automorphism groups GX and GY are

monoidally equivalent. Based on this connection between quantum isomorphism and monoidal

equivalence, it is natural to ask whether the converse holds, namely: does GX ∼mon GY imply

X ∼=A∗ Y ?

The answer to this question turns out to be ‘no’ in general. For example, take X = Kn and

Y = Kn. In this case we have GX = GY = S+
n (so GX and GY are in particular monoidally

equivalent as compact quantum groups), but it is clear from the definitions that A(Iso(X, Y )) =

O(GX , GY ) = 0. The intuitive reason for this is that the trivial monoidal equivalence taking

Rep(S+
n ) to itself does not map the adjacency matrix AX to AY . In fact, there cannot exist any any

monoidal equivalence ϕ : Rep(S+
n ) → Rep(S+

n ) satisfying ϕ(AX) = AY . This is because such a
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monoidal equivalence would force AX and ϕ(AX) = AY to be isospectral.

On the other hand, the following theorem shows that whenever we have a quantum group

G monoidally equivalent to GX , it is possible to find a quantum graph Y so that G = GY and

X ∼=A∗ Y .

Theorem 4.2.11. Let X = (O(X), ψX , AX) be a quantum graph and GX its quantum automor-

phism group. LetG be another compact quantum group that is monoidally equivalent toGX . Then

there exists a quantum graph Y = (O(Y ), ψY , AY ) so that G = GY , and we have a quantum

isomorphism X ∼=A∗ Y .

Proof. When X is a quantum complete graph, this result is already known [37, Theorem 3.6.5].

The proof in the case of arbitrary X follows almost verbatim, so we just sketch the main ideas.

Let ϕ : Rep(GX) → Rep(G) be the unitary fiber functor implementing the monoidal

equivalence as in Definition 4.1.1. Put L2(Y ) = ϕ(L2(X)), dY = dim(L2(Y )) and let

v = ϕ(u) ∈ MdY (O(G)) be the corresponding unitary representation of G on L2(Y ). Put

mY = ϕ(mX) ∈ Mor(v ⊗ v, v), ηY = ϕ(ηX) ∈ Mor(1, v) and ψY = η∗Y ∈ Mor(v, 1) and

AY = ϕ(AX) ∈ Mor(v, v). Then exactly as in the proof of [37, Theorem 3.6.5], L2(Y ) is a uni-

tal C∗-algebra with multiplication mY , unit ηY , involution ] : ξ 7→ ξ] = (ι ⊗ ξ∗)(m∗Y ηY ), and

ψY : L2(Y ) → C is a δ-form. We denote this C∗-algebra by O(Y ). Finally, consider the map

AY : L2(Y )→ L2(Y ). Then by definition of ϕ, we have

A∗Y = ϕ(AX)∗ = ϕ(A∗X) = ϕ(AX) = AY ,

mY (AY ⊗ AY )m∗Y = ϕ(mX(AX ⊗ AX)m∗X) = ϕ(δ2AX) = δ2AY ,

(ι⊗ η∗YmY )(ι⊗ AY ⊗ ι)(m∗Y ηY ⊗ ι) = ϕ((ι⊗ η∗XmX)(ι⊗ AX ⊗ ι)(m∗XηX ⊗ ι)) = ϕ(AX) = AY

mY (AY ⊗ ι)m∗Y = ϕ(mX(AX ⊗ ι)m∗X) = ϕ(δ2ι) = δ2ι,

so AY is a quantum adjacency matrix and Y = (O(Y ), ψY , AY ) is a quantum graph.

Now let GY be the quantum automorphism group of Y , with fundamental representa-

tion w ∈ MdY (O(GY )). Then by Definition 3.1.4 and the construction of the morphisms
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mY , ηY , ϕY , AY using the monoidal equivalence ϕ, there is a surjective Hopf ∗-homomorphism

σ : O(GY ) → O(G) given by (σ ⊗ ι)w = v. In particular, G < GY is a quantum sub-

group, which implies that for any m,n ∈ N0, we have Mor(w⊗m, w⊗n) ⊆ Mor(v⊗m, v⊗n).

To prove that in fact G = GY , it suffices to check equality in the above containments for

each m,n (see for example [11, Proposition 3.5]). To this end, recall that by our monoidal

equivalence, we have isomorphisms ϕ : Mor(u⊗m, u⊗n) ∼= Mor(v⊗m, v⊗n). Moreover, since

(by universality of GX) the space Mor(u⊗m, u⊗n) is generated (in the C∗-tensor categorical

sense) by the maps {ι,mX , ηX , AX}, it follows that Mor(v⊗m, v⊗n) is also generated the im-

ages {ϕ(ι), ϕ(mX), ϕ(ηX), ϕ(AX)} = {ι,mY , ηY , AY }. But by the same universal reason-

ing, Mor(w⊗m, w⊗n) is generated by {ι,mY , ηY , AY }, so we conclude that Mor(v⊗m, v⊗n) =

ϕ(Mor(u⊗m, u⊗n)) ⊆ Mor(w⊗m, w⊗n).

Finally, it remains to show that X ∼=A∗ Y . Since we have a monoidal equivalence ϕ :

Rep(GX) → Rep(GY ), Theorem 4.1.6 guarantees the existence of an O(GY )-O(GX)-bigalois

extension Z. Moreover, from [33, Theorem 2.3.11], one can construct a unitary operator z ∈

Z ⊗B(L2(X), L2(Y )) satisfying the relations

1. (1⊗ AY )z = (1⊗ ϕ(AX))z = z(1⊗ AX).

2. 1⊗ ηY = 1⊗ ϕ(ηX) = z(1⊗ ηX).

3. (1⊗mY )z12z13 = (1⊗ ϕ(mX))z12z13 = z(1⊗mX).

4. (z∗)12(1⊗m∗Y ηY ⊗ 1) = (z∗)12(1⊗ ϕ(m∗XηX)⊗ 1) = z13(1⊗m∗XηX).

These four relations say precisely that the map ei 7→
∑

j fj⊗zji defines a unital ∗-homomorphism

O(X)→ O(Y )⊗Z (where (ei) and (fj) are ONBs for L2(X) and L2(Y )). In particular, we obtain

a non-zero ∗-homomorphism O(GY , GX) → Z given by p 7→ z (where p denotes the matrix of

generators of O(GY , GX)). I.e., O(GY , GX) 6= 0.

Remark 4.2.12. With a little more work one can show that in fact O(GY , GX) ∼= Z via the above

homomorphism.
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Theorem 4.2.11 supplies us with many easy examples of quantum isomorphic quantum graphs.

Example 4.2.13. Let δ > 0 and let X and Y be quantum sets each equipped with δ-forms. Then it

follows from [38, Theorem 4.7] that the quantum automorphism groups of the spaces X and Y are

monoidally equivalent. In view of Theorem 4.2.11, this is equivalent to saying that the quantum

complete graphs KX and KY are C∗-quantum isomorphic. In particular,

• For each n ≥ 4, we have Kn2
∼=qc KXn , where KXn is the quantum complete graph associ-

ated to the quantum set Xn = (Mn(C), n−1Tr(·)).

• Let Q ∈ Mn(C) with Q > 0, Tr(Q) = 1, Tr(Q−1) = δ2 > 0, and consider the quantum set

Y = (Mn(C), ψY = Tr(Q·), δ2ψY (·)1). Then KY
∼=C∗ KX for any quantum set X equipped

with a δ-form.

In particular, quantum isomorphic quantum graphs need not have the same dimension.

4.2.3 Applications to LBCS games

We are interested in considering the notion of equivalence for games. An extension of our

result is shown in [22]. In order to do this, the key concept we need is the concept of a hereditary

∗-algebra.

Definition 4.2.14. A ∗-algebra A is called hereditary provided that, whenever n ∈ N and

x1, ..., xn ∈ A are such that
∑n

i=1 x
∗
ixi = 0, then xi = 0 for all 1 ≤ i ≤ n.

One key advantage of hereditary ∗-algebras is that if A is a hereditary ∗-algebra and we set

P =

{
x ∈ A : ∃x1, ..., xn ∈ A such that x =

n∑
i=1

x∗ixi

}
,

then P ∩ (−P) = {0}. Thus, we may define, for a = a∗ and b = b∗, a partial order by

a ≤ b ⇐⇒ ∃x1, ..., xn ∈ A such that b− a =
∑
i

x∗ixi.
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We note that if a ≤ b and b ≤ a, then a = b.

Given a ∗-algebra A, the smallest two-sided, ∗-closed hereditary ideal I containing 0 is

called the hereditary kernel of A, and the quotient A/I is denoted by Ahered. Given a syn-

chronous game G, we letAhered(G) denote the hereditary quotient ofA(G). Note that by Theorem

4.2.9, A(Iso(X, Y )) admits a faithful tracial state whenever A(Iso(X, Y )) 6= 0, and therefore

A(Iso(X, Y )) = Ahered(Iso(X, Y )).

If A and B are ∗-algebras with B hereditary and π : A → B is a ∗-homomorphism, then the

kernel of π contains the hereditary kernel ofA and so induces a ∗-homomorphism π̃ : Ahered → B.

Hence, for any pair of ∗-algebras A and B, every ∗-homomorphism π : A → B induces a ∗-

homomorphism π̃ : Ahered → Bhered.

Definition 4.2.15. Let G1 and G2 be two synchronous games. We say that G1 and G2 are ∗-

equivalent if there exist unital ∗-homomorphisms π : A(G1) → A(G2) and ρ : A(G2) → A(G1).

We say that G1 and G2 are hereditarily ∗-equivalent if there exist unital ∗-homomorphisms

π : Ahered(G1)→ Ahered(G2) and ρ : Ahered(G2)→ Ahered(G1).

We allow the possibility that one of the two algebras is (0), in which case 1 = 0 in that algebra.

In this case, equivalence of the algebras implies that the other algebra is also (0).

Note that we do not require π and ρ to be mutual inverses or even one-to-one, just unital. The

reason for examining this relation is given below.

Proposition 4.2.16. Let t ∈ {loc, q, qa, qc, C∗}. If G1,G2 are synchronous games that are heredi-

tarily ∗-equivalent, then G1 has a perfect t-strategy if and only if G2 has a perfect t-strategy. If, in

addition, the games G1 and G2 are ∗-equivalent, then G1 has a perfect A∗-strategy if and only if G2

has a perfect A∗-strategy.

Proof. We do the case t = q, the rest are similar. First assume that the algebras are ∗-equivalent.

If G2 has a perfect q-strategy, then there is a unital ∗-morphism γ : A(G2) → Md for some d.

Composing with π yields a ∗-homomorphism from A(G1) into Md, and so, G1 has a perfect q-

strategy. Since Md is a hereditary ∗-algebra, the same reasoning applies when the algebras are
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hereditarily ∗-equivalent. The converse is clear, as are the remaining cases.

We now introduce another game which we will show is hereditarily ∗-equivalent to a graph

isomorphism game.

We will now look at the connections between Iso(X, Y ) and syncBCS(A, b). Let us recall

from [2, Section 6] the graph GA,b defined for a linear system Ax = b over Z2.

Definition 4.2.17. Suppose Ax = b is an m×n linear system over Z2 and b ∈ Zn2 . Define a graph

GA,b with the following data:

1. the vertices of GA,b are pairs (i, x) where i ∈ {1, . . . ,m} and x ∈ Sbi ;

2. there is an edge between distinct vertices (i, x) and (j, y) if and only if there exists some

k ∈ Vi ∩ Vj for which xk 6= yk; that is, x and y are inconsistent solutions.

We are now ready to state the main theorem of this section.

Theorem 4.2.18. Let A = (ai,j) be an m × n matrix over Z2 and let b ∈ Zn2 . Then the following

three synchronous games:

1. syncBCS(A, b),

2. Iso(GA,b, GA,0),

3. Hom(Km, GA,b),

are hereditarily ∗-equivalent.

Two examples of graphs which are quantum isomorphic but not classically isomorphic was

shown in [2] utilizing this equivalence between the two games. In that example, both of the graphs

had 24 vertices.

Combining Theorem 4.2.18 with Theorem 4.2.9 yields the following consequences.

Corollary 4.2.19. Let A = (ai,j) be an m × n matrix over Z2 and let b ∈ Zn2 . The following are

equivalent:
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1. Ahered(syncBCS(A, b)) 6= (0),

2. syncBCS(A, b) has a perfect C∗-strategy,

3. syncBCS(A, b) has a perfect qc-strategy.

The proof of Theorem 4.2.18 borrows some ideas from the proof of [26, Theorem 5.4].

Proof. We begin by constructing a unital ∗-homomorphism from A(Iso(GA,b, GA,0)) to

A(syncBCS(A, b)). By our earlier remarks, this ∗-homomorphism will induce a unital ∗-

homomorphism from

Ahered(Iso(GA,b, GA,0)) to Ahered(syncBCS(A, b)).

The algebra A(syncBCS(A, b)) is generated by projections ei,x for i = 1, . . . ,m and x ∈ Zn2

satisfying
∑

x ei,x = 1 for all i, ei,xei,y = 0 if x 6= y. Moreover, given input i, if x /∈ Sbi , then they

lose for all (j, y), from this it follows that ei,x = 0 if x /∈ Sbi . Also, if x ∈ Sbi and y ∈ Sbj , then

ei,xej,y = 0 if there is a k ∈ Vi ∩ Vj with xk 6= yk.

Let S0
i ⊆ Zn2 denote the set of solutions to the ith equation of the linear system Ax = 0 and let

Sbi ⊆ Zn2 denote the set of solutions to the ith equation of the linear system Ax = b. Note that if

y ∈ S0
i and x ∈ Sbi , then x+ y ∈ Sbi . Moreover, for x ∈ Sbi , the map S0

i → Sbi given by y 7→ x+ y

is a bijection.

The algebra A(Iso(GA,b, GA,0)) is generated by projections e(i,x),(j,y) with (i, x) ∈ V (GA,b)

and (j, y) ∈ V (GA,0), satisfying certain relations. For (i, x) ∈ V (GA,b) and (j, y) ∈ V (GA,0),

define

q(i,x),(j,y) =


ei,x+y i = j

0 i 6= j

and note that each q(i,x),(j,y) is a projection. For (i, x) ∈ V (GA,b), we have

∑
(j,y)∈V (GA,0)

q(i,x),(j,y) =
n∑
j=1

∑
y∈S0

j

q(i,x),(j,y) =
∑
y∈S0

i

ei,x+y =
∑
z∈Sb

i

ei,z = 1.
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A similar computation shows that for all (j, y) ∈ V (GA,0), we have

∑
(i,x)∈V (GA,b)

q(i,x),(j,y) = 1.

We need to show that for all (i, x), (i′, x′) ∈ V (GA,b) and (j, y), (j′, y′) ∈ V (GA,0), the impli-

cation

q(i,x),(j,y)q(i′,x′),(j′,y′) 6= 0 ⇒ rel((i, x), (i′, x′)) = rel((j, y), (j′, y′))

holds. To this end, suppose q(i,x),(j,y)q(i′,x′),(j′,y′) 6= 0. Then i = j, i′ = j′, and ei,x+yei′,x′+y′ 6= 0.

We consider several cases.

Suppose first i = i′. Then we have x + y = x′ + y′. If x = x′, then y = y′ and we have both

(i, x) = (i′, x′) and (j, y) = (j′, y′) so the right hand side of the implication holds in this case.

Conversely, if x 6= x′ and y 6= y′, then (i, x) 6= (i′, x′) and (j, y) 6= (j′, y′). Note also that since

i = i′, x and x′ are necessarily inconsistent solutions so that (i, x) and (i′, x′) are adjacent. Similar

reasoning shows (j, y) and (j′, y′) are adjacent. Hence the right hand side of the implication holds.

Now assume i 6= i′ so that, in particular, (i, x) 6= (i′, x′). If (i, x) and (i′, x′) are adjacent,

there is a k ∈ Vi ∩ Vi′ such that xk 6= x′k. On the other hand, as ei,x+yei′,x′+y′ 6= 0, we know

xk +yk = x′k +y′k. Therefore, yk 6= y′k so that (i, y) and (i′, y′) are adjacent. Finally, suppose (i, x)

and (i′, x′) are not adjacent. Then xk = x′k for all i ∈ Vi ∩ Vi′ . Again since ei,x+yei′,x′+y′ 6= 0, we

also know xk + yk = x′k + y′k for all k ∈ Vi ∩ Vi′ and therefore yk = y′k for all k ∈ Vi ∩ Vi′ so that

(j, y) and (j′, y′) are not adjacent. This covers all cases.

Now, by the fact that A(Iso(GA,b, GA,0)) is the universal ∗-algebra with projections satisfying

these properties, we have that the map e(i,x),(j,y) → q(i,x),(j,y) ∈ A(syncBCS(A, b)) defines the

desired unital ∗-homomorphism.

Now we prove that there is a unital ∗-homomorphism from A(Hom(Km, GA,b)) to

A(Iso(GA,b, GA,0)). Note that for any graph X we have that A(Hom(Km, X)) is generated

by projections, ei,x, 1 ≤ i ≤ m, x ∈ V (X) satisfying
∑

x ei,x = 1, ei,xei,y = 0, x 6= y and

i 6= j, (x, y) /∈ E(X) =⇒ ei,xej,y = 0. Since we are interested in Hom(Km, X), this last relation
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changes to i 6= j, (x, y) ∈ E(X) =⇒ ei,xej,y = 0. For each (i, x) ∈ V (GA,b) and 1 ≤ j ≤ m

we define an element pj,(i,x) ∈ A(Iso(GA,b, GA,0)) by setting pj,(i,x) = e(i,x),(j,0). We have that∑
(i,x)∈V (GA,b)

pj,(i,x) = 1 and pj,(i,x)pj,(i′,x′) = 0 when (i, x) 6= (i′, x′) by the magic permutation

relations.

Finally, if j 6= l and ((i, x), (i′, x′)) ∈ E(GA,b) then rel((j, 0), (l, 0)) = +1 while

rel((i, x), (i′, x′)) = −1. Hence,

pj,(i,x)pl,(i′,x′) = e(i,x),(j,0)e(i′,x′),(l,0) = 0.

This shows that the map from A(Hom(Km, GA,b)) to A(Iso(GA,b, GA,0)) given by ej,(i,x) →

pj,(i,x) defines a unital ∗-homomorphism and again this will induce a unital *-homomorphism be-

tween their hereditary quotients.

Finally, we must exhibit a unital ∗-homomorphism from A(syncBCS(A, b)) into

Ahered(Hom(Km, GA,b)).

This latter algebra is generated by projections ei,(j,x), 1 ≤ i ≤ m, (j, x) ∈ V (GA,b), i.e., x ∈ Sbj .

These satisfy
∑

j,x ei,(j,x) = 1 for all i, and ei,(j,x)ei,(k,y) = 0 whenever (j, x) 6= (k, y). Moreover,

since (i, l) is an edge in Km whenever i 6= l, we have that when i 6= l and ((j, x), (k, y)) is not an

edge in GA,b (meaning that x ∈ Sbj and y ∈ Sbk are inconsistent solutions), then ei,(j,x)el,(k,y) = 0.

Note that if x, y ∈ Sbi and x 6= y, then ek,(i,x)ek,(i,y) = 0. If k 6= j, then k and j are connected by

an edge inKm, while (i, x) and (i, y) are not connected by an edge inGA,b, so that ek,(i,x)ej,(i,y) = 0.

From these facts, it follows that

pi :=
m∑
k=1

∑
x∈Sb

i

ek,(i,x)

is a self-adjoint idempotent. Set qi = 1− pi = q2i . Then

m∑
k=1

q2i =
m∑
k=1

(1− pi) = m · 1−
m∑
k=1

m∑
i=1

∑
x∈Sb

i

ek,(i,x) = 0,
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using the fact that
∑

j,x ei,(j,x) = 1 for all i. Thus, we have that

qi = 0 and pi = 1, ∀1 ≤ i ≤ m.

For x ∈ Sbi , set

fi,x =
m∑
k=1

ek,(i,x).

Then fi,x = f ∗i,x and for k 6= j, we have that k, j are connected by an edge in Km, while (i, x) is

not connected to (i, x) by an edge; hence,

f 2
i,x =

m∑
k,j=1

ek,(i,x)ej,(i,x) =
m∑
k=1

ek,(i,x) = fi,x,

so that fi,x is a self-adjoint idempotent. Also, for x, y ∈ Sbi with x 6= y, we have that

fi,xfi,y =
m∑

j,k=1

ek,(i,x)ej,(i,y) =
m∑
k=1

ek,(i,x)ek,(i,y) = 0,

and ∑
x∈Sb

i

fi,x =
m∑
k=1

∑
x∈Sb

i

ek,(i,x) = pi = 1.

Thus, for each i, {fi,x : x ∈ Sbi } is a set of self-adjoint idempotents whose sum is 1.

Finally, if (i, x) and (j, y) are inconsistent solutions, then

fi,xfj,y =
m∑

k,h=1

ek,(i,x)eh,(j,y).

When h = k, each of these products is 0. For h 6= k, we have that h and k are connected by an

edge in Km and so the product will be 0, since x and y being inconsistent solutions implies that

(i, x) and (j, y) are not connected by an edge in GA,b.

Thus, the set {fi,x} satisfies the relations on the generators of the free algebra

A(syncBCS(A, b)) and they induce a unital ∗-homomorphism from A(syncBCS(A, b)) into
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Ahered(Hom(Km, GA,b)), from which the result follows.

4.3 Bigalois extensions and quantum isometries of metric spaces

In this section, we explore the quantum isometries between two W ∗-quantum metric spaces.

We restrict our attention in this section to the finite dimensional case, where interesting universal

algebras are guaranteed to exist. This section uses techniques from [10].

Definition 4.3.1. Consider two finite dimensional quantum metric spaces X = (M1,H1,Vt) and

Y = (M2,H2,Wt) where the canonical traces onM1 andM2 are fixed and {ej} and {fk} are

orthonormal bases forM1 andM2. Moreover, by Theorem 3.3.9 we may assumeHi = L2(Mi).

We define O(GV,W) to be the universal C∗-algebra generated by the coefficients of a unitary

P = [pij] ∈ O(GV,W)⊗B(H1,H2) with relations giving a unital ∗-homomorphism

δV,W :M1 →M2 ⊗O(GV,W)

ej 7→
∑
k

fk ⊗ pkj

and ensuring the conjugation map given by

αV,W : B(H1)→ B(H2)⊗O(GV,W)

T 7→ P (T ⊗ 1)P ∗

satisfies αV,W(Vt) ⊆ Wt ⊗O(GV,W).

This definition satisfies two crucial criteria:

1. GV,V = GV , as desired

2. For classical metric spaces (X, dX), (Y, dY ) and their corresponding W ∗-quantum metric

spaces (`2(X),Vt) and (`2(Y ),Wt), we have O(GV,W) = A(Isom(X, Y ))
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Proposition 4.3.2. Given two quantum graphs X1 = (B1, ψ1, A1) and X2 = (B2, ψ2, A2), we let

(M,Vt) and (N ,Wt) be the associated W ∗-metric spaces.

If the two quantum graphs are quantum isometric, then so are their associated W ∗-metric

spaces.

Proof. If the quantum graphs X1 and X2 are quantum isomorphic, then there exists some C∗-

algebra C and some unitary P ∈ C ⊗B(L2(X1), L
2(X2)) which intertwines the unit maps ηBi and

the multiplication maps mBi such that the map

α12 : B(L2(B1))→ B(L2(B2))⊗ C

T 7→ P (T ⊗ 1)P ∗

satisfies P (A1 ⊗ 1) = (A2 ⊗ 1)P .

For the associated operator systems Si = Vi defined in Example 3.2.4, one can show that

α12(S1) ⊆ S2 ⊗ C. It then immediately follows that α12(Sk1 ) ⊆ Sk2 ⊗ C.

Definition 4.3.3. We say that the quantum metric spaces (M1,H1,Vt) and (M2,H2,Wt) are

A∗ quantum isometric if O(GV,W) 6= 0, and we write (M1,Vt) ∼=A∗ (M2,Wt). We say they

are are C∗ quantum isometric if O(GV,W) has a C∗-representation, and we write (M1,Vt) ∼=C∗

(M2,Wt). Finally, we say they are qc-quantum isometric if O(GV,W) admits a tracial state and

write (M1,Vt) ∼=qc (M2,Wt), so that by the work of [30] this is the same as the existing notation

for classical metric spaces.

Our next goal is to show that O(GV,W) admits a natural structure as an O(GV) − O(GW)

bigalois extension.

Theorem 4.3.4. If O(GV,W) is non-zero, then there exists a O(GV)−O(GW) bigalois extension.

Proof. We show that O(GV,W) is an O(GW) − O(GV) bicomodule, following the proof in Sec-

tion 4.2.
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We define “cocomposition” ∗-morphisms

γW : GW → GV,W ⊗GW,V γW(uij) =
∑
k

pik ⊗ qkj

γV : GV → GW,V ⊗GV,W γV(uij) =
∑
k

qik ⊗ pkj

where q = [qij] is the matrix of generators of GW,V .

We now have a two-object cocategory C: the four algebras GV , GW , GV,W and GW,V are

thought of as dual to “spaces of morphisms” between two objects (x 7→ x for GV , x 7→ y for

GV,W , etc) and the γ maps are dual to morphism composition.

Next, we make C into a cogroupoid by defining coinversion maps

SV,W : GW,V → GV,W

SW,V : GV,W → GW,V

Let F = FV ∈ Mn and G = FW ∈ Mm be matrices with the property that Fei = e∗i and

similarly for G, so that F = F−1 and G = G−1. Then we have the following involutivity of

morphisms on the left equivalent to the equalities on the right

δV : H1 → H1 ⊗GV (1⊗ F )u = u(1⊗ F )

δW : H2 → H2 ⊗GW (1⊗G)v = v(1⊗G)

δV,W : H1 → H2 ⊗GV,W (1⊗G)p = p(1⊗ F )

(4.10)

For ease of notation we will start writing uF for u(1 ⊗ F ). Then we have G−1pF = p and

F−1qG = q.
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Then we can check that we have a unital algebra homomorphism

H1 → H2 ⊗ (GV,W)op

fi 7→
∑
j

ej ⊗ p∗ij

Applying G to both sides and noting that ej = FF−1ej then the map above is involutive with

respect to the modified ∗-structure ? on (GV,W)op given by (p∗)? = (F−1p∗F )t.

The universal property ofGV,W implies that the homomorphism above factors as (id⊗SV,W)δV

where SV,W is a conjugate-linear anti-morphism defined by

SV,W : GW,V → GV,W q 7→ p∗ q∗ 7→ GtpF−t

SW,V : GV,W → GW,V p 7→ q∗ p∗ 7→ F tpG−t

Since we have shown that C is a connected cogroupoid then if GV,W is non-zero, [8] and [10]

shows that GV,W is a GV −GW bigalois extension.

Utilizing the work in [7], we can show the existence of a bi-invariant state ω for the GV −GW

bigalois extension, referenced in Theorem 4.1.6.

Consider n ∈ N and matrices Fi ∈ GLn(C). Define O(U+
F1
, U+

F2
) to be the unital ∗-algebra

generated by the coefficients zij of the n1×n2 matrix z = [zij] ∈Mn1,n2(O(U+
F1
, U+

F2
)) the relations

that z and F1zF
−1
2 are unitary where z = [z∗ij]. Note that if O(U+

F1
, U+

F2
) 6= 0 then O(U+

F1
, U+

F2
) is

a O(U+
F1

)−O(U+
F2

) bigalois extension with respect to the bicomodule structure given by
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αF1,F2 : O(U+
F1
, U+

F2
)→ O(U+

F1
)⊗O(U+

F1
, U+

F2
) αF1,F2(zij) =

n1∑
k=1

uik ⊗ zkj

βF1,F2 : O(U+
F1
, U+

F2
)→ O(U+

F1
, U+

F2
)⊗O(U+

F2
) βF1,F2(zij) =

n2∑
`=1

zi` ⊗ v`j

where u = [uij] is the fundamental representation of U+
F1

and v = [vij] is the fundamental

representation of U+
F2

.

Theorem 4.3.5. ([7]) LetG be a compact quantum group and (Z, α) a leftO(G)-Galois extension.

Let F ∈ GLn(C) be such that G < U+
F with corresponding surjective morphism π : O(U+

F ) →

O(G). If there exists F1 ∈ GLn1(C) and a surjective ∗-homomorphism σ : O(U+
F , U

+
F1

) → Z

satisfying α ◦ σ = (π ⊗ σ)αF,F1 then Z admits a left-invariant state ω : Z → C.

Thus, we have the following theorem:

Theorem 4.3.6. Let (M1,Vt) and (M2,Wt) be finite quantum metric spaces. If GV,W 6= 0, then

there exists a faithful, bi-invariant, tracial state ω : GV,W → C.

Proof. Utilizing the proof of Theorem 4.3.4, we may consider the matrices F1 = FV and F2 =

FW . Equation (4.10) shows that we have surjective ∗-homomorphisms π : O(U+
FV

) → GV and

σ : O(U+
FY
, U+

FX
)→ GV,W satisfying

α ◦ σ = (π ⊗ σ)αFY ,FX
.

Then by Theorem 4.1.5, GV,W admits a GW −GV invariant state, and it is tracial if and only if

both GV and GW are of Kac type.

Corollary 4.3.7. Let (M1,Vt) and (M2,Wt) be finite dimensional quantum metric spaces. If

GV,W is non-zero, then the compact quantum groups GV and GW are monoidally equivalent,

GV ∼mon GW .
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Proof. This is a corollary of Theorem 4.3.6. By Theorem 4.1.5, GV and GW are monoidally

equivalent.

Corollary 4.3.8. Let (M1,Vt) and (M2,Wt) be finite dimensional quantum metric spaces. Then

the following are equivalent:

1. (M1,Vt) ∼=A∗ (M2,Wt)

2. (M1,Vt) ∼=C∗ (M2,Wt)

3. (M1,Vt) ∼=qc (M2,Wt)

Remark 4.3.9. This theorem says that as soon as O(GV,W) is non-zero, then O(GV,W) admits a

tracial state. This is non-trivial and it has been shown that this phenomena is not true for other

games. In [12], a graph homomorphism from a quantum graph to a classical graph was defined

and studied. They showed that the game ∗-algebra is always non-zero when the output graph is

K4.

By restricting our attention to classical metric spaces, we get one of the main results of the

paper:

Corollary 4.3.10. Let (X, dX) and (Y, dY ) be classical metric spaces. Then the following are

equivalent:

1. X ∼=A∗ Y

2. X ∼=C∗ Y

3. X ∼=qc Y

Proof. This is an immediate consequence of Corollary 4.3.8.

Remark 4.3.11. An example of two classical graphs which are quantum isomorphic but not clas-

sically isomorphic is shown in [2]. Each of the graphs have 24 vertices, and naturally give rise to

classical metric spaces of size 24 which are quantum isometric but not classically isometric.
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5. SUMMARY

We have proved that given two quantum objects (either quantum graphs or quantum metric

spaces), if the quantum symmetry group between the two quantum objects is non-zero then it is im-

mediately true that the two quantum symmetry groups of the two quantum objects are monoidally

equivalent (Theorem 4.2.7 and Corollary 4.3.7). When restricted to classical objects, this says that

the two classical objects are algebraically quantum isometric if and only if the corresponding game

has a perfect quantum-commuting (qc)-strategy (Theorem 4.2.9 and Corollary 4.3.10).

One might consider the graph isomorphism game played with a quantum graph X and let GX

be its quantum automorphism group. Then for any compact quantum group G monoidally equiva-

lent to GX , one can construct from this monoidal equivalence a quantum graph Y , an isomorphism

of quantum groups G ∼= GY , and an algebraic quantum isomorphism X ∼=A∗ Y (Theorem 4.2.11).

We believe this should also be true for W ∗-quantum metric spaces.

Conjecture 5.0.1. Let X = (M1,Vt) be a W ∗-quantum metric space and GV be its quantum

isometry group. Let G be another compact quantum group that is monoidally equivalent to GV .

Then there exists a W ∗-quantum metric space Y = (M2,Wt) so that G = GW , and we have a

quantum isometry X ∼=A∗ Y .

There are a number of open questions regarding the scope of graph isomorphisms games, and

this may be interesting for future research. We wonder what is the computational power of the

class of graph isomorphism games? While it’s likely that the class of graph isomorphism games

are not enough to disprove Connes’ embedding conjecture, we still wonder whether it is possible

to produce a graph G whose quantum automorphism group is not hyperlinear; that is, for which

L∞(G) does not embed into an ultrapower of the hyperfinite II1-factor Rω.
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